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CHAPTER I

INTRODUCTION

As systems become more and more complex, the need for good fault

diagnostic procedures becomes more obvious. In recent years much work

has been done on the fault analysis of digital circuits, primarily

because the growth in the size of these circuits has necessitated good

fault diagnostic tests. The two state nature("1" or "0") of digital

circuits has also made them more amenable to the development of

reasonably simple and reliable test procedures. In contrast, research

on fault diagnostic procedures for analog circuits has not been as

fruitful, nor have the pressures to develop good fault diagnostic tests

for analog circuits been as great due to their relatively small number

of components in comparison with digital systems.

Presently there is a great interest in the automatic testing and

fault analysis of electrical circuits because of the availability of

low-cost computer systems. This report addresses itself only to the

analog circuit testing problem.

It has been difficult to obtain a solution to the fault analysis

problem because (a) usually the restriction is imposed that connections

cannot be broken which means that currents cannot be measured reliably

and (b) the responses in a circuit are nonlinearly related to the

parameter values of the circuit. Due to these difficulties the

practical approach to fault analysis has been to generate fault

.- i
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dictionaries. In this approach the circuit is simulated with a number

of different fault conditions and the responses are compiled in a

dictionary. The problem with this approach is that it requires

excessive computation time and massive storage. For example, if a

circuit has p parameters, and if one assumes n different Possible values

for each parameter, then (n)p simulations would be required to generate

the dictionary. In order to avoid eCessiVe computation time and

massive storage, it is Usually necessary to consider only a small number

Of Possible faults so that the number of computer simulations required

is not excessive.

In the second chapter, we review some of the Previous work in the

fault analysis of analog circuits. We review briefly different

approaches together with their advantages and disadvantages.

A new approach for the fault analysis of linear analog Circuits

based on the adjoint circuit concept will be presented in detail in the

third chapter. The approach requires the measurement of all node

voltages under certain test conditions. In addition, the simulation of

the adjoint circuit on the computer is required. The approach has the

advantage of detecting Possibly large tolerances. It is also highly

computationally efficient, and it does not require massive storage.

Moreover, the formulation allows one to determine necessary and

sufficient test conditions to determine the component values.

In the fourth chapter, we adapt the same approach to deal with

fault detection in analog circuits with accessibility to only part of

the nodes. A major application, single fault identification, will be

discussed in detail.* It is shown that input and output voltage

measurements are enough to identify single faults.
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The extension of the approach to the fault analysis of analog

circuits with some nonlinear elements is discussed in the fifth chapter.

It is shown that we can determine any number of operating points on the

I-V characteristic of the faulty nonlinear elements.

Some numerical examples are presented to demonstrate the different

algorithus in the sixth chapter. The conclusion follows in the seventh

* chapter.
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CHAPTER 2

PREVIOUS WORK IN THE

FAULT ANALYSIS OF ANALOG CIRCUITS

2.1 INTRODUCTION

The problem of fault analysis of analog circuits has been attacked

for many years from different sides. The fault analysis problem

j requires the determination of circuit parameter values from Some

measurements. Many different approaches and theorems have been

presented in the literature. In this chapter we will review some of the

approaches for the fault analY3is of analog circuits together with some

theorems for solvability. They will be categorized into two main

categories. The first category is when all the circuit nodes are

accessible. By an accessible node we mean a node whose voltage can be

measured, and any type of excitation (voltage or current source) can be

applied to the circuit at that node with respect to a reference node.

The second category is when we have only a subgroup of the nodes that

are accessible, while the rest of nodes are not. The advantages and

disadvantages of each method will be discussed.

2.2 PREVIOUS WORK AND THEOREMS FOR SOLVABILITY

2.2.1 ACCESSIBILITY TO ALL CIRCUIT NODES

In this section we will review some of the previous work done for
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fault analysis assuming that all the circuit nodes are aCCes3ible.

2.2.1.1 METHODS FOR ELEM4ENT ISOLATION

The determination of the value of an element is not difficult if

both the current through the element and the voltage across the element

can be measured. In order to determine the current through an element,I one terminal of the element Must be isolated.* This can be done by

breaking the connection at one end of the element, but this approach is

not considered practical in most test situations. However, in this

section, three other methods El) are given for effectively isolating an

element which do not require that conductive paths be broken.

Consider the circuit in Figure 2.1 . The unknown element is

connected between the nodes numbered 1 and 2.* The impedances Z a through

Z lie on paths which ultimately return to node 1. Let us inject a

current I into node 2. The element Z0can be isolated by shorting nodes

3 to k, connecting a voltage source to node 3, and adjusting the value

of the voltage source until V 2 2V3 as shown in Figure 2.2. Then,

= 2 111

The disadvantage of this approach is that it requires the shorting of

nodes in the circuit, and furthermore, the voltage source Must be

adjusted iteratively until V 2zV3

A second approach which does not require an iterative adjustment

consists of shorting nodes 3 to k, and applying a voltage source between

nodes 3and 1, as shown in Figure 2.3. For this circuit,
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FP-6357

Fig. 2.1 Arbitrary network containing Z0.
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Fig. 2.2 Equpotential method for element isol.ation.



8

FP-6359

Fig. 2.3 Determination of without iterative adjustments
of the voltage source.

CC
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(V2 1/V3) •Z/(Z 1 .eZ O ) ... ,(2.2)

Note that Z Is the equivalent impedance of the parallel combination of

j impedanoes Za through Zm . Next, nodes 3 through k are shorted to node 1

as shown in Filgure 2.3, and the impedance

z s 13• (ZIE Z0)/(ZlrZO )  .... (2.3)

is measured. From Eqs. (2.2) and (2.3) we obtain

Z0  a Z ls/(1-(V 21 /V )) .... (2.4;)

Thus, the unknown impedance Z0 can be determined from a two-step

measurement procedure. The accuracy of the method deteriorates when the

voltage ratio V21/V is nearly unity, or equivalently , IZlEI<<IZOI.

Finally, a third approach to isolating an element consists of

connecting the element Z0 to the negative input terminal of a high gain

amplifier and grounding nodes 3 through k, as shown in Figure 2.4.

Ideally, the amplifier would have infinite gain and zero offset so that

node 2 is a virtual ground. Thus, assuming negligible current through

the impedances ZaZb, ..... P,Z, we obtain

ZO 2 -R ef Vs/ V0  .... (2.5)

This method requires only one measuremenc. The Hewlett-Packard 3060A

Board Test System uses a sophisticated version of this node isolation

technique to make in-circuit component measurement.
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p 2.2.1.2 LARGE CHANGE SENSITIVITY RELATIONSHIP

Attacking the problem in a reverse manner, R. N. Gadenz,

M. G. Rezai-Fakhr, and G. C. Tames [2], 1973, used a relation between

the voltage and current changes in the original circuit due to possibly

large parameter changes, and the voltages and currents of the adjoint

circuit in order to compute voltage and current changes due to tolerance

effects. They set up a reduced system of equations solvable by either

Gaussian elimination or iteration to compute the response changes for

specified element changes, regardless of whether or not they are small

or large changes. They found out that their method was more economical

and efficient in computation than the direct analysis method or any

other method, provided that the number of toleranced parameters is much

smaller thin the number of equations needed for the direct analysis of

the network.

2.2.1.3 SINGLE FAULT DETECTION IN POSITIVE RESISTOR CIRCUITS

An approach for single fault detection in positive resistor

circuits Was suggested by T. N. Trick and R. T. Chien £31. In which, it

was proved that for positive resistor circuits, if one and only one

resistor changes from its nominal value, then the voltage across that

resistor is greater than or equal to all the other resistor voltage

changes.

2.2.1.4 A THEOREM ON SOLVABILITY

Studying the same problem from the graph theory point of view,

W. Mayeda proved an important theorem [4] concerning impedance

isolation. He stated that :"the measurement of the impedance Z0 at its
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terminals a and r is possible if and only if all paths in the circuit

from node a to node r (excluding the path through Z.) contain at least

one accessible node." He proved this theorem Using topological concepts;

a slightly different proof was also discussed in [1].

2.2.1.5 THE ADJOINT CIRCUIT APPROACH

In this thesis, We present an additional approach to the

calculation of element values when all the nodes in the circuit are

accessible. This method is discussed in detail in the next chapter.

2.2.2 ACCESSIBILITY TO PART OF THE CIRCUIT NODES

In this section, We Will review some Of the previous work done for

fault analysis assuming that not all of the circuit nodes are

accessible. There are two main directions in this case; the first is L
concerned with Pre-t03t procedures, while the second is concerned with

post-test procedures.

2.2.2.1 PRE-TEST APPROACH

The Pre-test approach is well-known as the fault dictionary method

and is the Most popular approach Used in industry. In this approach

faulty circuits with different fault combinations are simulated on the

computer. Then, the different responses are compiled and a set Of fault

signatures are generated and stored. The correlation of actual test

results with the stored data is Used, hopefully, to identify the faulty

elements. Different methods were proposed to implement this fault

dictionary approach.

In 1966, S. Seshu and R. Waxman [5) gave a procedure for generating
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a set Of tests for conventional linear systems by means or gain

measurements from an input terminal to an output terminal. Basically,

the procedure was to compute the corner frequencies Of the nominal

network and choose, as test frequencies, several frequencies in the

neighborhood of each corner frequency, and hence, detect shifts in the

corner frequencies. Interpretation Of measured values are obtained by

precomputing the gain at these frequencies for parameter deviations from

their nominal values, and compiling a fault dictionary. Two major

disadvantages are, first, it needs the computation of the symbolic

transfer function, and second, the computation time grow exponentially

with the increase in circuit elements.

G. 0. Martens, in 1972, developed a way for the identification of a

single fault in electronic circuits (6). They made Use of the fact

that, in a linear circuit, any transfer function can be expressed in

terms Of just one circuit parameter in a bilinear form. Graphical

constructions of the transfer function loci are pre-plotted under

different parameter changes, either experimentally or by circuit

analysis using a digital computer. Then, simple magnitude and phase

measurements, at a number of test frequencies, are made and plotted on

the set of predetermined loci in the complex transfer- function plane.

The faulty component and its parameter value may, then, be determined

from the loci. The method is restricted to Only single fault detection.

It has some disadvantages; first, It requires considerable

computational and graphical effort in order to plot the transfer

function loci, especially when the circuit contains a high number of

components. Second, it fails to detect faults in some elements at some

frequencies. Third, it cannot point out single faults in a group of
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different type elements connected in parallel. Finally, it does not

have the capability of detecting relatively large single faults when the

rest of the circuit parameters are within some prescribed tolerance.

A practical fault dictionary approach was given by R. E. Tucker and

L. P. MoNamee [7]. They developed fault models for some active devices,

e.g. a transistor, where the faults occuring were catastrophic , i.e.

either an open or short circuit. Then, they used these models in

running computer aided analysis programs for the probable fault

conditions. Next, they divided the different faults into groups, where

each group was characterized by some certain faulty responses. Hence,

using this information and the data obtained from the test circuit, they

could detect and isolate catastrophic faults. Their method is basically

the fault dictionary approach, which requires one to consider only a

limited number of possible faults in order to avoid excessive

computation. The method is a brute force approach which only yields

information about the number and placement of test points through

numerous computer simulation.

Another similar approach is given in [8].

2.2.2.2 POST-TEST APPROACH

The post-test approach does not require any pre-test data. It is

performed after the test measurements have been made and consists of

solving a set of nonlinear equations.

In 1962, R. S. Berkowitz £9) initiated one of the first theoretical

studies of the analog circuit fault analysis problem. He mathematically

defined the concept of network-element-value solvability. Specifically,

he established a set of definitions which enabled an objective

i ,1



discussion of network solvability of arbitrary passive, linear, lumped

parameter networks with respect to a restricted set of external

terminals (available and partly available). Then, he obtained a

relation between the number of available and partly available terminals

of a network, and the number of admittance functions determining the

measurable behavior of the network. Moreover, he introduced some

theorems that gave solvability conditions for purely resistive networks

with extension to include networks with internal energy sources.

Finally, he obtained a general necessary condition for

network-element-value solvability. Unfortunately, his work, 1) only

gave some necessary conditions for network solvability, 2) lacked

algorithms for network element evaluation, and 3) did not include active

elements.

S. W. Director and R. A. Rohrer [101, 1969, attacked the problem

from the design point of view. They introduced an automated network

design algorithm in the frequency domain. In that algorithm, they

started with an initial guess to the network structure and associated

element values. Next, they considered a weighted integral square error

criterion over a specified frequency range as a performance measure. By

means of Tellegen's theorem £ 11,12], they derived a relation between the

voltage and current changes in the circuit due to parameter changes and

the voltages and currents of the adjoint circuit £13]. Then, they

calculated the parameter space error gradient using that relation along

with only two analyses for both the original and the adjoint circuits

over that specified frequency range. Next, they adjusted the element

values, i.e. tuned them, using a suitable optimization technique such

that they moved in the negative gradient direction. Finally, they
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repeated this process until a suitable termination criterion was met.

This algorithm had two disadvantages; first, it took much computer

time, and second, since only first-order sensitivity information is

utilized, the algorithm can have serious convergence problems.

A fault isolation scheme via component simulation was proposed by

R. Saeks (14~], in 1972. By assuming an appropriate algebraic connection

model matrix, a system could be separated into two different blocks,

components and connections blocks. A formulation of the System's

variables is constructed based on that separation. Then another system

is designed to augment the original system, such that ihe whole

augmented system behaves exactly the same as the components of the

original system. Hence, by controlling the inputs to that augmented

System and observing its outputs, component parameters could be

determined. Using this formulation, they obtained the algebraic

necessary and sufficient conditions for the exact determination of the

internal component parameters for both the single-test frequency and

multiple-test frequency cases. The main disadvantages of such a scheme

are that, it requires an extremely large number of measurements. It

also requires considerable computational effort for inverting some

matrices, whose sizes are proportional to the dimension of the System.

Moreover, it is not very practical for the given test conditions, since

it requires the measurement of both branch currents and branch voltages.

Other approaches are discussed in (15].
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CHAPTER 3

THE ADJOINT CIRCUIT APPROACH

3.1 INTRODUCTION

In this chapter, a new algorithm is proposed for the calculation of

the element values in a linear circuit from node voltage measurements.

The method requires the measurement of the node voltages of the circuit

under several different test conditions. In addition, the simulation of

a second circuit, the adjoint circuit, is required under various

short-circuit constraints. The adjoint circuit simulations need to be

made only once for any given circuit, and the results can be stored for

future use. The element values of the test circuit can be easily

computed from the node voltage measurements on the test circuit and the

responses obtained from the adjoint circuit simulations.

3.2 THE ADJOINT CIRCUIT APPROACH

To derive the algorithm, consider the linear circuit N in Figure

3.1, which has m ports available. One may connect voltage or current

sources to these ports or simply make open-circuit voltage measurements

at these ports. We will assume that it is not practical to make

short-circuit current measurements, because if this is the case , then

by placing such a port in series with each element, the branch currents

are measurable and the problem becomes trivial. In addition,

short-circuiting some nodes while doing measurements may cause some

*WA

.... . ......... ....... S abnn.M J Sm .m. -
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Fig. 3.1 Linear circuit with m input,output,or test ports.
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damages to the circuit, e.g. burning some junctions due to excessive

currents. Also, we assume that the circuit N has b internal branches

whose respective branch voltages and currents in the frequency domain

are denoted by IVkkik}. Finally, we introduce a second circuit N

[11,12,16), shown in Figure 3.2, which has the same topology as N, but

not necessarily the same branch or port constraints. It is assumed that

these circuits obey Kirchhoff's laws so that by means of Tellegen's

conservation of power theorem we can write [11,12,26]

b m1:(V ki k-Vkik)--- ZC (V pJ IpJ-V pi IpJ).. (3.1)

Now suppose that one or more faults occur in the circuit N so that

I Vk..Ve - V->k~~k ~k V 4Vp ,and I -I &Ik--Vk+ Vk I Ik-->Ik+ &I , Vpj pJ+ p pj--" pj+ pj

Eq. (3.1) becomes

b
SVk(,k &Ik)-(Vk 4Vk)Ik]=

k=l

m
E [Vpj(Ipj+ 41pj)-(VpJ AVpJ)IpJ] .... (3.2)
J-I

Subtracting Eq. (3.1) from Eq. (3.2), we obtain

b m
-- (VIk AI- Vk ) E (V Al &V I .... (3.3)

k k) pi p.- pJP

Thus, by means of Tellegen's theorem, one can obtain a relationship

between the voltage and current changes in the original circuit, due to
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FP-5949

Fig. 3.2 Adjoint circuit of the circuit under test.

h .................,...............................
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parameter changes in that circuit, and the voltages and currents of the

adjoint circuit (1,17,18,19]. Eq. (3.3) is valid for both frequency

and time domain measurements.

Next, we need to introduce the branch constraints into Eq. (3.3).

Since we have assumed that only voltage measurements are available, we

will assume that we can express every branch current as a function of

its branch voltage.

If we assume that the Icth branch corresponds to an admittance whose

nominal value is Yk, then we will have

tk = Yk Vk .... (3.4)

and with faults

I k+ &Ik z (kY k)(Vk +Vk) .... (3.5)

Therefore

&I k 2 4yk(Vk AV ) + Yk 4Vk .... (3.6)

where V. denotes the kth branch voltage when the circuit has no faulty

component, i.e. with nominal values. Furthermore, let us choose the

kth branch constraint of the circuit N such that it is the adjoint

circuit of N [11,12,16], that is

k Yk Vk .... (3.7)



22

Then we obtain

VkAk- a VkIk a (Vk AVk)VkA k .... (3.8) "

In Eq. (3.8) we assume that we can measure the branch

voltage Vk+ A Vk , and the admittance change AYk is the unknown.

Similarly, if we assume that the kth branch corresponds to a

voltage controlled voltage source (VCVS), whose nominal value is 1k

we will have

Ik 2 0 ,and Vk.... (3.9)

and with faults

lak &60O ,and V k AVS k--(k+ 1kk) (Vctk 4V k )  ...(3.10)

Therefore,

A I - ,and 6 V~k-- 44 k(Vck & Vok) )h k atVxk. . 3. )

where a refers to the controlling branch and B refers to the

controlled branch. Moreover, let us choose the kth branch constraint of

the circuit N such that it is the adjoint circuit of N, that is a

current controlled current source (CCCS) with SI

I* = "'kS k ,and VBk z 0 ... (3.12)
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Then, we obtain

A A

yrk Ixk" AVkI k+Vk 4lk AV kI9 k

S- (Vck AVvk)I~k Aik ... (3.13)

where in Eq.(13) we assume we can measure the controlling branch

voltage Vk+ AV k , and the coefficient change A6k is the unknown.

Similar expressions can be easily obtained for other controlled

sources; voltage controlled current source (VCCS), current controlled

current source (CCCS), and current controlled voltage source (CCVS).

They are given in Table I.

Hence, Eq. (3.3) will reduce to

b mE (X k+&Xk)X k akPkz - , ; (Vpj &I pj- AV pj Ipi) ... (3.14)

A

where Xk+ A Xk is assumed to be measured, Xk is assumed to be

calculated from the adjoint circuit analysis, and APk is the unknown

parameter change. These quantities are defined in Table I for different

circuit elements. Eq. (3.114) is a linear equation in the

unknown &Pk , kal,2,....,b. In order to solve for the APkIs we need

to generate a set of simultaneous linear algebraic equations with a rank

equal to the number of unknowns. This can be done by an appropriate

choice of test conditions for the circuit N and its adjoint N. This

set of simultaneous independent linear algebraic equations will have the

following form

)
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TABLE I THE CIRCUIT CONSTRAINTS AND THE CONTRIBUTION TO THE RIGHT SIDE OF
EQ. (3.14) FOR THE DIFFERENT CIRCUIT ELEMENTS.

oftIm ok X k LC arne~to

*TOr Ciraust iri amo 3.4

(VkV) A% VkJVk) V- 'J J

ovccr ok Vhk Vhk-"Vk ik-

C= j A j ~ 'j)" 'l- kj J lk 1)^j'f

ccvs rk ']'.) -1A -1.0 Jlt4 '
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" ,. I .s . .
(X 1+ 'X1)X1 (Xn 4'Xn)Xnl" . .• (Xb "AXb)Xb AP1 1

I) xlI . . . (Xn A 1) . . . (xb tixb)X b  n enI* ••. ..I .5

.(3.15)

x., ,,x 1  . . . (Xn. AX )Xn . . . (Xb ,Xb)Xb .Pb 6eb

where &ei represents the right-hand side of Eq. (3.14), and each

equation has a different combination of test conditions for the circuit

N, and its adjoint N. In general, the matrix of the linear system

(3.-15) is full. Then, the computation effort to solve this system will

increase rapidly as the dimension of the circuit increases. Hence, it

will be a good idea if this system could be broken into smaller

subsystems, as shown by the dashed line in Eq. (3.15). Since, the

entries of such matrix are (Xk+ AXk)Xk , and since (Xk+ 4Xk) is a

response to be measured, then, the only term we can have control on will

be Xk. This could be done by appropriate choice of the adjoint circuit

excitation conditions in order to force some of these Xk's to be zero,

e.g., if we choose the adjoint circuits such that

Xn+1-Xn+2- ...... zXb-O in the first n-equations in system (3.15),

then, we can solve the resulting nxn subsystem for the unknowns

SP 1 . . . . . . . , Pn' By doing so, we can partition our bxb matrix into

comparatively smaller submatrices. Consequently, the computational

effort will be improved greatly by solving these small subsystems.
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In other words, a special choice of the adjoint circuits N will

isolate a group of elements. This group of elements consists of all

elements in a outset, for example, all the elements connected to a

common node. In order to see how this is done, consider the circuit

shown in Figure 3.3, where YI through Yn are connected to node 1. Here

we will assume, for simplicity, that this group of elements are linear

and passive. Although, active elements could be handled by the

appropriate models and Table I. Suppose we Wish to measure the

deviation of all n of these admittances from their nominal values. In

Figure 3.3, we will assume that node n+1 is the reference node, and we

have introduced n test ports at which measurements can be made and

excitations applied to the circuit. In order to isolate the admittances

Y1 through Yn and simplify the calculations, the ports 2 through n are

shorted and a 1A source is applied at port 1 in the adjoint circuit as

shown in Figure 3.1. With these constraints, Eq. (3.I-1) becomes

b n

V P1 E (Vk+ AVk ) 4 Yk 4Vpl.A+ Vpkpk..(3.16)
"kzl kz2

nVpl and eliminate the adjoint circuit responses.

n n-i

1 (VIC+ ) A yks-(Y1o+y20+---+Yn) AVp j* kO AVp(k+l) ... (3.17)fIa 1' k--l

or

n n

k. (V + 4Vk) 4Yk- r Yk0 4Vk ...(3.18)
keall i thit

Recall that V k is the branch voltage in the circuit without faults. YkO
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is the nominal value of the admittance, and AVk is the change in the

branch voltage in the faulty circuit. Eq. (3.18) can also be derived

by taking the difference between the Kirchhoff's current law equations

at node 1 for the faulted circuit and the unfaulted circuit (nominal).

Note that we have not as yet specified the port constraints in the

circuit under test. In order to solve for the unknown admittance

deviations from their nominal values, we need to measure the branch

voltages (Vk+ A Vk) (j ) for n independent test conditions. Thus, the

superscript j denotes a particular test. We write

cVI +V1)(1) ..... (Vn AVn)(1) Ay1 - LYkO AVk 1

• . • = ... (3.19)

+V1 V )(n ) ..... (Vn Vn (n )  Ayn "=iO k( n )

For now, we assume that each of these tests is made at the same

frequency. In order to obtain a unique solution to Eq. (3.19), the

square branch voltage array must have rank n, that is, the rows of this

square array must be independent. The necessary and sufficient test

condition required to determine the admittances Y1 through Yn from

branch voltage measurements can be found from the short-circuit

admittance equations for the circuit.

Y Y.p ... (3.20)

where the port voltages for a particular input excitation 4 ( ) is

iL , . "l lt . ,: o .. . . . . . IIII I -- III I I I . . .. . if . l/l I llI~l~n ll lll rl lil l ll I "'" ... .. ... .. ..
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p r' .3.21)

Thus, in order to generate n independent port voltage vectors P(J),

J=1,2, ...... ,n , and hence, n independent branch voltage vectors X(j )

we need to excite the circuit with n independent current source vectors.

One possible set of test conditions is given below.

sl* Cnditins: Set Ipj= 1A , and Ipi= 0, i=1,2,....,n , but iij, and

measure the branch voltages (Vk+ AVk) . Do this for J=1,2......,n,

Figure 3.3. Substitute this information into Eq. (3.19) and solve for

SY k,k=l,2 .....,n.

Thus, the use of Tellegen's theorem and the concept of the adjoint -

circuit leads to a simple linear relationship between the unknown

parameter changes and the branch voltage measurements. The number of

linear algebraic equations which must be solved is equal to the number

of unknown admittances connected to the node. Note also that the

necessary and sufficient conditions for the determination of the

admittances Y1 through Yn from only their branch voltages is that nodes

1 through n 1 be accessible. Finally, the above results apply not only

to a collection of admittances connected to a common node, but also to

any cutset of admittances in the circuit. Below a simple algorithm is

given for the calculation of the admittances in a ladder network from

node voltage measurements.

3.3 LADDER STRUCTURE NETWORKS

The ladder circuit is an important structure to consider since most

passive filters (including mechanical and crystal filters) have the

ladder structure.Also, many A/D and D/A converters contain a resistive
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ladder network.In this section it will be shown that all the admittances

in the arms of the ladder circuit can be uniquely determined from a

simple matrix inversion.

Consider the ladder network in Figure 3.5.The following theorem

states the minimum test conditions that are both necessary and

sufficient to determine all the admittances from only voltage

measurements at a single frequency.

Theorem

All the parameters in the ladder circuit can be uniquely

determined from voltage measurements at a single frequency

under the following two test conditions:

P1) p 0 1 p2- 0 and measure the branch voltages

(Vi AV,) (1), i=1,2 .... ,2n+I

2) Ipl- 0 1 p2 1 0 and measure the branch voltages

(Vi AV,)(2), i=1,2,......,2n+l , and provided that

a) the circuit does not have transmission zeros at the

measurement frequency, b) the series arm impedance Z2 k1 0 at

the measurement frequency, and c) the equivalent impedance at

any node in the circuit is finite.

Condition a) is necessary so that we have nonzero branch voltages to

measure at the given test frequency, and b) is necessary in order to

avoid having Y2k-l and Y2k,1 in parallel at the test frequency.The

admittances of parallel elements usually cannot be determined from only

voltage measurements at a single frequency. Finally, in practice

accuracy requirements may dictate that we perform more than the above

number of minimum tests.Next, a proof is given for this theorem.

In order to simplify both the proof and the computational

i - * .. . .. . ' - - -ii | .. .. . i . .
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Y2 Y . .. Y ~ Yin102

V2  + V4  +VZk + IV 2

IIi *Vol '1' V1  Y3 V3  V2~..1  Y~- v~nir,.jY 1 ,,. P

Fig. 3.5 Ladder network.
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complexity of the method, we will isolate the elements at a single node

by shorting the other nodes In the adjoint circuit and applying a 1A

source at the non-shorted node as shown in Figure 3.6.We do this

successively for all (ne,1) nodes in the adjoint circuit. The first

adjoint circuit isolates the admittances Y, and Y2.The second adjoint

circuit isolates the admittances Y2,Y3, and Y ,etc. The last adjoint

circuit ((n41)th) isolates the admittances Y2n and Y2ni.Then Eq.

(3.19) becomes

(VI+AVI )(V 2+AV2 )(1)! 0 0 ... 0 AY1

(Vi+&V1) (2) (V2+4V2 ) (2)I 0 0 ... 0 ,Y2

0 -(V-AV )1)V 3 +V 3 ) (1)(V 4  M..V4 )(1. 0 aY3

0 (V 2 . V2 )(2)(V 3 (V3 )(2)(V 4 dV )(2 )1... 0

0 0 0 (V4+04)(  0

0 0 0 ... (V2 n 1 1V )(1 3"
""l &" 2n a.

AV 1 I y 1o-02 ( M Y2o

_6V I (2) Y o-V2(2) Y'2

1 2n( ( 2

)2ny2n,o'4V
2nl )Y2n4+1,o
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Fig. 3.6 Isolation of elements by shorting nodes
in the adjoint circuit.
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Solving the first two equations, we can determine &Y1 and dY2 .Then

y 2 is substituted for in both the third and fourth equations , which
upon solving them we can, determine &Y3 and AY4.By proceeding in this

manner, we can determine the unknowns dYi, i=1,2 .....,2n1.It is clear

that we only solve subsystems of dimension 2x2 at most. Note that the

last subsystem will have a dimension of Ix1.In this case, it is easy to

see that the number of operations required to solve system (22) will be

proportional to the dimension of the system.While if the matrix of Eq.

(3.22) is full, then, the number of operations needed will be

proportional to the dimension raised to the power of 3. This indicates

that great saving in the computation effort will be achieved through the

special choice of the adjoint circuits.

The proof of the last theorem will be based on studying the two

equations resulting from the kth adjoint circuit; they are

2k V2k-2) (V2k-1 +AV2k-1 ) () 1F) Ay2k-2
(V2k 2AV2k 2)(2 (V2k +V2k ) (2) (2)11 ,

(V2k 2k-1V2k-1 YV2k ( 2k .. .(3.23)

[V~k22Y ]
V2k2 k-2v2k-1 (2 k-1V2k(2) 2k

In Eq. (3.23) there are only two unknowns, 4 Y2k-1 and AY2k.The
a Y2k-2 is determined in the (k-1)th solution.A necessary and sufficient

condition to obtain a unique solution for the AY's is that
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(V 2k+4V2k) (1) (V 2k+V2k) (2)
(V~k.+4V~. I ) I )...•(3.24)(V 2-l+A~k- (1) (V 2k1 AiV2k-1 ) (2)

The requirement that there be no transmission zeros at the measurement

frequency insures that the above voltages are not zero.Also, Eq. (3.24)

is equivalent to the requirement that

Z 2k j "Z2k ... (3.25 )
Z2k + Z -1

where Z2 1  is the equivalent impedance at node k with Y2k 0 , and

Z~k+1 is the equivalent impedance at node k+1 with Y2k O.We can write

(25) as

Z2k IZzk+Z k.J +Z ... (3.26)

Note that the equivalent impedance at the kth node is

Zeqik Zk.CZ2k+Z2k 1 3 ...(3.27)
Z2kZl+Z~k-1

This condition requires that Z2ki 0 and that the equivalent impedance

at each node be finite at the measurement frequency.The requirement that

the voltages not be zero at the measurement frequency also means that

there are no transmission zeros at the measurement frequency, that is

Z2k must be finite and Zeq,ki 0 at this frequency.

In conclusion, this theorem gives two simple conditions by which

all the impedances in a ladder network can be computed provided that the

test frequency is not at any of the transmission zero frequencies, nor

+. , + '. . ., ,
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is any of the series arm impedances zero at the test frequency. In the

next section, we examine the possibility of using multiple test

frequencies to determine the components in a circuit.

3.4 MULTIPLE TEST FREQUENCIES

Recall that in order to uniquely determine the admittance changes

in a faulty circuit, we need to have n test conditions sucb that the

rank of the square matrix in (19) is n, that is equal to the number of

unknowns.In addition to exciting the circuit at different test points

we can also use different test frequencies; however, the admittances

are frequency dependent in dynamic circuits.Thus, Eq. (3.19) must be

written in terms of individual component changes, that is,

J W 1 ) 1 V 1 ,0 0( J . lW )  n ( V n 4 4 V n ) ( ) A P 1

011 (n)(n

(Jn) (V1+4V1) ... (Jwn) n(Vn+4Vn )  4P

n
Z 1 Y k°(Jwl)Vk(1)

k: 1

... (3.28)

n
-I Yko(Jun)&Vk (n)

where &P = AGJ, AC1 , or Ar and the exponent c =O,+l,or -1, depending
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on if the Jth branch is a resistor, capacitor, or inductor,

respectively.The voltage (V£V ) (1 ) is measured at the frequencYw.S.

If we assume a single unit input function and that the branch

voltage is a rational function of the complex frequency s, then we can

write (28) as (without any pole-zero cancellation)

n1 NI(3 1 ). . . 1 1 p 1

D(s1) D(sn)

sn n( 

n
Z Y ko(l )AVk(1)

... (3.29)

n
Z 1Yko(s n)AVk(n)

where the polynomial D(s) yields the poles of the transfer function for

the branch voltages with respect to the input port, and Ni(s) yields the

zeros.A necessary and sufficient condition for the solution of Eq.

(3.29) is that the square matrix on the left is nonsngular.This means

that none of the test frequencies can be a pole of the polynomial D(s)

(in case there are pure imaginary poles) .Also, the circuit cannot have

two identical element types in parallel.Note that the above matrix can

be written in the form



n --- 1 (n)Ni(31) 3 N 3 a (1 . a

. . aS A ...(3.30)

Ni(s n) ... (1) i -
n i=O n i=O .

where S and A are nxn matrices given by

131 512 . . Sln-1l

1 2 5 n-11 323 22. . . 32

I = .(3.31-a)

s 2 n- 11 s 3n  . ., S

(1) (2) (.n)a 0 a o . . ." a
a1(1) (2) a (n)

1  a 1  . . . .

A= . .(3.31-b)

a (1) (2) . .a (n)a n1 an 1  •- 1 -A aI

Then, a necessary and sufficient condition for the solution of Eq. (29)

is that both matrices S and A be nonsingular.This implies that the n

test frequencies should be different pairwise.Also, the difference

between the highest degree and lowest degree terms of at least one of

the polynomials Ni(s ) in Eq. (3.29) be n-i, to insure that there

will be no zero row in the coefficient matrix A.In addition, the

coefficient matrix A is of full rank.

If these necessary and sufficient conditions are satisfied, then,
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one can always find a set of n frequencies such that the rank of the

square matrix in Eq. (3.29) is n.

Note that by using different measurement frequencies, we can

determine the value of different types of parallel elements, while this

is impossible under only single frequency voltage measurements.Below an

alternative algorithm is given for the calculation of the impedances in

dynamic ladder circuits with different type elements.

3.5 LADDER NETWORKS

Consider the same ladder network as before, Figure 3.5, where the

structure has different type elements. Recall that in order to uniquely

determine all the parameters, we need two test conditions.The first test

consists of exciting port 1 with a current source and measuring all

branch voltages, while in the second test port 2 is excited with a

current source and all the branch voltages are measured.These two test

conditions are performed at the same frequency.

In this section, we will show that we can also uniquely determine

all the parameters of a ladder circuit from the following two test

conditions.

1) With Ip 1O and 1p2 0  Measure all the branch voltages

(Vi+ 6 vi ) 
( 1) ,i = 1 ,2 , ..... ,2n+l at the frequency f 1"

2 ) With Ip 110 and I measure all the branch voltages

(Vi+ 4 Vi) (2)1,a,2 .....,2n+1 at the frequency f2 "

These test conditions together with the same adjoint circuits will yield

the following linear system of equations.
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where 4PJ= AG, AC Mor 4r and the exponent aj=O,+l,or -1 depending on

if the jth branch is a resistor, capacitor, or inductor, respectively.As

stated before, solving the linear system (32) will be veryI computationally efficient, because in each step, we solve only a 2x2

linear subsystem, except the last one has a dimension of I

In this case, a necessary and sufficient condition for the solution

of Eq. (3.32) is that each 2x2 submatrix and the last Ixi submatrix be

nonsingular.Consider the two equations resulting from the kth adjoint

circuit, they are (after some manipulation)

w2) (V 2) (2) 2k(V V)(2) P

e 21c-1 :.... (3.33)

A necessary and sufficient condition to obtain a unique solution for

SP2k- and 4 P2k is that

(J(°) azd (V 2k_1+6V2k_1) (1)1 2)(d( k1+V2-) (2) ..(-4

(V2k 4V 2k)(1) (V2k +4V2kk ) 2).

where, ofd= O2k- 1 2k ...(3.35)

and can have an integer value in [-2,2].

This implies that there be no transmission zeros at the measurement

frequencies, to insure that the above voltages are not zero.Also, the

two frequencies must be different.In addition, the series arm Z2k O
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and the equivalent impedance at any node of the circuit should be finite

at both of the measurement frequencies, otherwise we get a zero

determinant. Note that the only way that Eq. ( 3 . 3 4 ) is not satisfied,

is when we have either a circuit with the same element type structure,

or the complex function F(s) has the same value at two different

frequencies, where

_Vk1(3)+&V 2k-1 (3))
F(3)f(3) d -... (3.36)

(V (s) +aVk () )

Obviously, we exclude circuits with structures of the same element type.

With the above conditions satisfied, one can always find two

different frequencies such that Eq. (3.314) is satisfied, which means

that the matrix of Eq. (3.33) is nonsingular.

3.6 MIXED TEST CONDITIONS

So far, we have shown that in order to isolate a group of n

elements in a cut set of a circuit, we need n different test conditions

such that the matrix of Eq. (3.19) is nonsingular.These n different

test conditions could be obtained through two ways.First, by exciting n

specified ports with a current source at the same frequency and

measuring branch voltages.Second, by exciting one specified port at n

specified frequencies, and also measuring branch voltages.Using the

second way, we can determine the value of different type parallel

elements, which is not possible through the first way.On the other hand,

using the first way, we can handle single element type structures, which

is not possible through the second way.

Sometimes it is necessary to use a combination of the above test
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conditions in order to uniquely determine the element values.In other

words, we can excite our circuit at different ports with different

frequency current sources.This approach would be needed in circuits

where there is at least a group of different type elements connected in

parallel, etc.

As an example to illustrate this, consider the circuit shown in

Figure 3.7, where we need to determine the parameter deviations in

R1 ,R2,L,and C.The test conditions for this circuit will be

1) Connect a current source between nodes a and o, and measure

(V+V and (V2 +V 2  at three different frequencies fi, i-I,2,3.

2) Connect a current source between nodes b and o, and measure

(V,+AV,)(4) and (V2 .AV2 ) 
(4 ) at one frequency, say f1.

Under these test conditions, we will have

3 11(V 1 4V 1 ) ( 1 ) 3 1(V1 +,Vl ) ( 1 ) (V 1 46V1) (1) (V 2+4V 2) (  Ar

S2-1(VV1+v() 2 (V1+V) (2  (VAV ) (V2+AV 2 )(
2 ) AC

s 3 "(V1.6V1 ( 3 ) s3 (V 1 +AV ) ( 3 ) (VI+AVI(3) (V2 +AV2 )( 3 ) AG

, 1"1(V 1 4V) sI(V 1 +aVI) (4 ) (V1+4Vl) (V 2+AV2 )(
4  AG 2

-1 LQ 1 .s, 0 0 0 A (1)- (G2 1V T
-- (Sl-ILo-3ISl0o+Glo) Avl G I .2o AV 2("

-3 (s2"1Lo0 'I. 2 Co+Glo)AV (2)-G2oAV2 (2) ... (3.37)
-~~~~ ~ ~ ~ (s 3- 

3L 
0 33CO 

)&l

-1 -1 ( 4) (4)

( 1- Lo 0+ 1C 0+Go)AV 1 )-G2 0 V2 ()

Solving Eq.(37), we can determine the deviation in parameters

aI, AC, AG1 , and aG2 .
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Fig. 3.7 Calculation of RLC parallel elements.
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In the next section, the effect of measurement errors on the

solution for parameter deviations will be studied.In addition, the

dependence of that solution on the first-order sensitivities of the

circuit will be revealed.

3.7 EFFECT OF MEASUREMENT ERRORS ON THE SOLUTION

It has been shown that, in order to isolate the group of n elements

in Figure 3.3, we need to solve the nxn linear nonsingular system of Eq.

(3.19) or Eq. (3.28).Any of these systems is constructed mainly from

voltage measurements. Practically, voltage measurements are obtained

within some tolerance depending on the accuracy of the measuring device.

In order to examine the effect of these measurement errors on the

solution, we will apply the perturbation theory (18,19] on our linear

system.

3.7.1 ERROR ANALYSIS IN LINEAR SYSTEMS

Any of the linear systems given by Eqs. (3.19) or (3.28) could be

rewritten as

A...(3.38)

where A in an nxn nonsngular matrix and its entries are measured

voltages under different test conditions, X is the unknown parameter

deviations vector, and k is the right-hand side vector, where its

entries also depend upon the measured voltages.Having errors in the

measured voltages is like perturbing both A and b , simultaneously.

Then, the problem of studying the effect of measurement errors on the
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solution will be equivalent to the problem of studying the effect of

perturbations in both A and k on the solution . in Eq. (3.38).

Incidently, the problem of studying the effect of perturbations in A and

individually on x was done in [18,19].Upper bounds on the resulting

relative error in x were derived in each case.Next, we will obtain an

upper bound on the relative error in . resulting from simultaneous

perturbation in both A and 4.

3.7.1 .1 EFFECT OF PERTURBATIONS IN It ON x

In this section, we will consider the effect of perturbations only

in the right-hand side vector b on the solution vector .& of Eq. (3.38).

Specifically, we assume that only k is perturbed to , while A is

held fixed.Consequently, will be perturbed to x A , and Eq.(38)

becomes

A(x 6x o )  = _bk_.] ... (3.39)

Subtracting Eq. (3.38) from Eq. (3.39), we get

A L : ... (3.40)

or

'4Ab =  A - I  ... (3.41)

By taking norms of both sides
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llAXbl1l < 11IA-, I II  llAl ... (3.42)

Also, taking norms of both sides of Eq. (3.38)

1 lbll< JlAJl i ll ... (3.43)

Multiplying Eqs. (3.42) and (3.43), we get

ll~~11Xbll llbll <IIJAII IIA IIl~ll~ ... (3.44)

Assuming that JO , we get

flaxb III _ II
- < Cond(A)- ... (3.45)

where Cond(A)41All IIIIAl=( Ii/ 11n) > ... (3.46)

and 6I and hn are the largest and smallest singular values of matrix

A, respectively, i.e., i2  and $n2 are the largest and smallest

eigenvalues of fA, respectively, where AT is the complex conjugate

transposed of A.

Eq. (3.45) is an expression for the upper bound on the relative

error in x due to perturbation in b.Note that the quantity Cond(A),

named as the condition of matrix A, appears in that upper bound and it

has a minimum value of unity.

( ) P =x , .... ,xn T is a vector of n components, we mean by

lIX lxl1 2+Ix 2 1.2+....+l xn 2]0"5. If B in an nxn matrix, we mean by

IIBII :max( IIBIll / llxl1 ) over ll&ll 1 O.
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3.7.1.2 EFFECT OF PERTURBATIONS IN A ON IL

In this section, we will consider the effect of perturbations only

in the matrix A on the solution vector & of Eq. (3.38).In particular,

we assume that only A is perturbed to A+8A, while . is

fixed.Accordingly, X will be perturbed to +jxA , and Eq. (3.38)

becomes

(A 6 A)(z xA) ... (3.47)

Subtracting Eq. (3.38) from Eq. (3.47), we get

II(A+6A) UxA = -6A ... (3.4 8 )

Assuming IIA- 1 8A11 < 1 , then, (A 6A) is nonsingular, and we will have

8-&A = (I A'I6A)- I  A- ' 6A.1 ... (3.49)

By taking norms of both sides, we get

- II(IA' 6A) - I I IA- 18A11
lI II

1 - II A-1 6AII

IIA- 1 II 116AI
< ...(3.50)
- 1 - IIA " II 116AlI

which could be rewritten as
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ll8xAII  Cond(A) EII 8AIVAll)11

Mll - 1-Cond(A) IIsAI/IAII]

which is the upper bound on the relative error in . due to perturbations

in A. Note that the quantity Cond(A) appears also in this upper bound.

3.7.1.3 EFFECT OF PERTURBATIONS IN A AND b ON % 4
In this section, we will consider the effect of simultaneous

perturbations in both the matrix A and the right-hand side vector ja on

the solution vector x of Eq. (3.38). This case is important because it

will be the actual situation when we have errors in the voltage ]
measurements, as shown before. Hence, assume that A is perturbed to

Ak5A, while k is perturbed to J_ . Consequently, x will be perturbed ii

to .+_6x, and Eq. (3.38) becomes

(A+6SA)(.&+6X) = . ...(3.52)

and our goal is to get a relation between &, and both of 8 A and Lb.

Equivalently, we can get a relation between L& and both 4.A and . ,

where U A and § are the perturbations in A due to individual

perturbations in A and J1, respectively.

Subtracting Eq. (3.38) from Eq. (3.52), we get

(**) Since I:(I+B)- 1 (I.B)s(I B) -(I+B)- 1 B, hence,

1rece I t 11 (I B)"-11 -I(18)-IB 11111 (IdB)e-d11 -11(I.B)-l11 B 1, which

reduces to I(I+B)'III1<1/(I- JIII provided that IIBII < 1.
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(A6 aSA) L& = -6A x * . ... (3.53)

ji Substitute from Eqs. (3.40) and (3.48) into (3.53)

(A+6A) (A.5A) • + A Ub ... (3.54)

Again, assume that !I-A6Al < 1, then (A 6A) is nonsingular

LAx 4A + (I+A-8A)"1 §Ab .. (3.55)

I
Take the norms of both sides, then divide both sides by :ILI

1 1 § A t l t -8 x A l l I I 1 -, U b, 1 1I
- <- + 1- ... (3.56)1l1li 1 l l -11A -  11 116AII 1JI&JI

Finally, substitute from (45) and (51) into (56)

II~xll ond(A) 116Ali _ 1
- < - - - ) ... (3.57)

lixll - 1-Cond(A)[II6AIVIIAII] IIAIl hI..LI

Eq. (3.57) is the expression for the upper bound on the relative

error in & due to simultaneous error in both A and 1.. As anticipated,

Cond(A) appears in this expression.

In order to lessen the relative error in x due to errors in A

and/or k, it is necessary to push the upper bound(s) down as far as

possible. One obvious way to keep relatively small upper bounds is by

keeping small relative errors in A and 1 , i.e. by keeping small errors

in the measurements. Another way, is by having low values of Cond(A).

Moreover , for certain values of relative errors in A and . , the
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relative error in. is minimum when Cond(A)=1. In general, knowing the

value of Cond(A) together with the maximum relative error in A and .,

one can have a clear idea of the accuracy of the solution x.
Note that the assumption fIA IIA 118AB < 1 used before is

practically feasible, since the measurement errors are usually very

small compared to exact values.

In the next section, we will apply the error analysis to the ladder

structures and try to relate Cond(A) to the circuit specifications.

3.7.2 LADDER STRUCTURE NETWORKS

As shown above, in order to have an idea about the accuracy

obtained when solving for the network parameter deviations, we need to

examine the condition of the square matrix of the corresponding linear

set of equations. Since in case of ladder structures, Figure 3.5, we

will have linear subsystems of dimension at Most 2x2. Then it is

sufficient to study the condition of a 2x2 general submatrix in Eq.

(3.22), where the A matrix is given by

A:....(C3.58)

Az (V 2k-l+AV2_1) (2)(V V24Vk)( 2  a2 1 a22

For this 2x2 matrix, an analytic expression for Cond(A) is available in

terms of aij , the entries of matrix A [18], which is

Cond(A) = o+ ( - )0.5 ...(3.59)

where,

, .. , ,, , . , .. . . .... . .. .. 1
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1y2 a i2+2+ 1 2]/[2 la1  I ...(3.60)

It is clear from Eq. (3.55) that Cond(A) is continuous

monotone-increasing with a on (1,o). Hence, the lower value of a

the smallest value of Cond(A), is the smallest relative error in the

solution vector due to errors in the voltage measurements.

Under the previously specified two test conditions in the theorem,

we will have the equivalent networks shown in Figures 3.8-a and 3.8-b.

For simplicity, we assume that we have a network with elements of the

same type. Without loss of generality, we assume that we adjust the

excitations such that the Norton's equivalent current source is 1A in

each in Figures 3.8-a and 3.8-b. Under these assumptions, we will have

the following voltage expressions

V2k-1 ''Z2k-1l(Z2k 2k+l)/(-2-1 +2k 4 2k1 )  .(3.61-a)

(1) % /
V 2k XZ 2k-lz 2k(/ Z2k-1+Z 2k Z2k+l ) .(3.61l-b)

2k- 1 ( 22k- 1 Z~k/(Z2k- 1 +Z2kZ21c 1)

V(2) % /( % %
V 2 X 2kZ2k+l Z 2k-1 z2k Z 2k+ 1 ) .(3.61-d)

Substituting from Eqs. (3.58) and (3.61) into (3.60), then, dividing

both numerator and denominator of the resulting equation by

IZ klIIZ2k+lI' ,we get

a" ( =2 0.5 82,o+1)/( 1 .1+ ) ...(3.62)
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lA Zj.... vi')ZZk+

(a)

j0
+ (I

(b) "Ga

Fig. 3.8 (a) Norton's equivalent circuit at nodes k and ke1
under the first test condition.

(b) Norton's equivalent circuit at nodes k and kc.1
under the second test condition.
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where a and o are impedance ratios, given by

a=Z2k/Zkl ,and 8 =Z2k/Z2k-l ... (3.63)

According to the previous theorem, a and 0 must be finite and non.

zero. In addition, they are positive and real quantities due to the

assumption of same element type structures. As stated before, we wish

to have as low a value of a as possible in order to have low relative

error in the solution. In addition, the minimum value of C is 1, which

makes Cond(A) equal to 1, a minimum also.

A closer look at the function of Eq. (3.62) yields the following

data

a) If a=O, then a =(1.5a2++1)/(CY 2  ). Hence, aE 1.118,1.5] for

aE[O.5,co), as shown in Figure 3.9.

b) a :1 and 8 =2 gives a minimum value of a , which is unity.

Hence, in order to have a low value of a , a and 0 should not be

small, and they should be close in value. This suggests that ladder

networks, with nearly equal arm impedance values and equivalent

impedance values at each node, will have very low relative error in the

solution for the parameter deviations due to errors in the measurements.

Examples of such structures, in practice, are A/D and D/A converters,

etc.

For general topology networks, it is not easy to adopt the same

analysis to extend the result obtained for ladder structures. This is

because of the fact that it is not possible to get an analytic

expression for the condition of matrices having dimensions higher than

2x2. Rather, we would draw a similar conclusion, but using the concept
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Fig. 3. 9 Relation between a and aY when c~
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of first-order sensitivities.

Consider a general topology network as shown in Figure 3.10.

Assume , for simplicity, that it is a linear passive circuit, and port 1

is the 'input port with voltage source as an excitation. Also, consider

its adjoint circuit, Figure 3.11, where port 1 is shorted and port m

(output port) is excited by a 1A current source. Then Eq. (3.14)

becomes

b v lVk) AYk 3pm
SPM ( 1 -. - ... (3.64)

Zic k Vk Yk Vpm

By generating b independent equations of Eq. (3.64), we can solve for

the AYks. In this case, it is also desirable that we have as low

matrix condition value as possible. Now, suppose that the system matrix

is transformed into a diagonalized form using orthogonal matrices. Then

the matrix condition value will not be affected [18]. This will be

equivalent to the following system. First, assume that we have a

network NJ, that is the same as network N, but only element Y has a

fault AY1 " Second, assume that we have another network N2, that is the

same as network N, but only the element Y2 has a fault 6Y 2 . By doing

so, we can generate the following equivalent system of equations.
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i

IPv

I+

i-V

4Original

Vp 2  Network

6lpm N

Vpm

Fig. 3.10 Linear circuit with m ports.

. . . . . . • I1I l l I I l i 1 m l S : ] . . .
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PI

2 Adjoint
t Network

V P,

+:N) 1A pm

Fig. 3.11 Adjoint ci.rcuit of circuit under test.
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v V 6y dAY(1)
S pm  0 0 (1+-))A

I  pm

SV1  Y1 A V Pm(2 )
iVpm 2 p0 SP 0 (1~~2)_ 2

2V 2  Y2  'pm

. ...(3.65)

0 0 sVpm aV(b)

L "" b Vb Yb Vpm

This system is equivalent to the original system of equations because,

it yields the same solution for the 4Yks. Then, for the diagonal

matrix of Eq. (3.65) to have as low condition value as possible, we

V
should have very close values for S m; k=1,2 ..... ,b. In other

k
words, having very close values for the first-order sensitivities will

help keep low matrix condition value, and consequently, low errors in

the solution due to measurement errors.

Generally, it is a good idea that, during the course of solving for

element deviations, one solves for the singular values for the different

submatrices to determine their condition values. These values will give

a good indication of the accuracy of the computed parameter deviations.

3.7.3 SOME PRACTICAL CONSIDERATIONS

It was shown in Eq. (3.22), that for ladder networks, we only need

two test conditions. Moreover, the formulation allowed us to solve for

two (or one) elements at a time, e.g., first we solve for A Y1 and AY2

then using the obtained value for LY2 , we solve for 4 Y3 and AY.

This is done repeatedly until we solve for all the element deviations.

Depending on the element types and values, and the test frequency(s),

one or more of the 2x2 submatrices in Eq. (3.22) may be
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ill-conditioned. This will cause a numerical problem in obtaining the

element deviations corresponding to that ill-conditioned submatrix.

Consequently, those element deviations will have large errors.

Moreover, since one of these values is used to solve for the next couple

of element deviations, then this large error will propagate to the

remaining parameter calculations. In order to cure such a situatuion,

we need to break that ill-conditioned submatrix and reorder the elements

such that the corresponding elements are placed at the bottom.

As an example illustrating how such scheme is done, consider the

ladder network in Figure 3.5, where the submatrix corresponding to

elements Y2k-1 and Y2k is ill-conditioned. In this case, we will choose

a different set of adjoint circuits. The ith adjoint circuit will be

the same as the original circuit except node i is excited by a IA

current source, and both nodes i-I and i+1 are shorted (except when i=1,

only node 2 is shorted, and when i=n+1, only node n is shorted). We do

this for i=1,2 ..... ,k-l,n+1,n,n-1 ..... ,k+1,k , in this order. Then, in

Eq. (3.22), the previously ill-conditioned submatrix will no longer

exist.

Another important practical aspect is the choice of test

frequency(s). This is discussed in detail in [5]. It was noticed that

the test frequency(s) in the neighborhood of the poles and zeros of the

circuit's transfer functions yielded the most information. Furthermore,

it is obvious that choosing a frequency(s) that is(are) deep in the stop

band of the circuit is a bad choice. It is also recommended that if

more than one frequency is to be chosen, then, they should not be

adjacent in a flat band, but, they should be chosen in different slope

segments of the output frequency response,i.e., they should interlace
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with the circuit's poles. Sometimes, changing the test frequency(s) may

be used to cure an ill-conditioned submatrix situation.

fI.
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CHAPTER 4

INSUFFICIENT TEST DATA

4.1 INTRODUCTION

It was shown in the previous chapter that if all the node voltages

are accessible, then in the case of linear circuits, there is a linear

relation between the circuit parameter changes and certain voltage

changes. Furthermore, one can generate an appropriate number of tests

such that the system of equations has a rank equal to the number of

unknown parameters. In practice, it may not be feasible to measure all

node voltages, i.e. a subgroup of nodes in a circuit may be accessible,

while the rest of nodes may not. By an accessible node, we mean that we

can measure its voltage, and we can apply any type of excitation to it

(either current or voltage source). Consequently, we expect to have

less test data than we need to solve for the circuit parameter

deviations, that is, the number of unknown parameters will exceed the

number of equations when only a single test frequency is assumed.

4.2 FAULT IDENTIFICATION UNDER INSUFFICIENT TEST DATA

Consider the linear circuit N in Figure 4.1 which has b

parameters, and m accessible ports, where m<b. Assume that the circuit

N is excited at port 1 with a current source, and the voltages of all

the accessible rn-ports are measured at the same frequency. Consider,

also, the adjoint circuit N of the circuit N, Figure 4.2. Assume that
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: P
+ C N

Fig. 4.1 Linear circuit with m accessible ports.
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Fig. 4.2 Adjoint circuit of circuit under test.
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we excite the adjoint circuit at the jth port by a 1A current source.

Then Eq. (3.14) becomes

b
S(X k+ "l k ) Ik &Pk AV Vpj .... (4.1)

k= 1

which could be rewritten as

Pj (1.+-) .... (4.2)

PP
ka k Xk Pk V pj

where P and are as given in table rT, and S is the firit-order

normalized sensitivity of port voltage V with respect to parameter Pk

and is given by [15]

Vpj Vpj Pk(43)
Pk P Pk V pj

Table II also gives expressions for the first-order sensitivities for

different circuit elements and the circuit constraints for both test and

adjoint circuits.

Since we assume that we have access to only a subgroup of the

circuit nodes, then this means that we cannot measure all branch

voltages, i.e., some of the Xk'S in Eq. (4.2) will be unknown. In

this case, we have to include the quantities (1 + -X. ) with the
unknown vector, i.e.,we consider that the unknowns are the

d Xk 4 Pk ,

(1 - ) Pk 's. By doing so, we restrict our measurements to
k k

one and only one test condition, i.e., the same excitation at the same

frequency.
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TABLE 11 THE CIRCUIT CONSTRAINTS AND THE SENSITIVITY EXPRESSIONS

FOR THE DIFFERENT CIRCUIT ELEMENTS.

Tatdmew Atwit aru.

Ad "&N vk.Ipg kY

I ~ ~ ~ ~ GC rcv Y v k.~~ I~K( E---~~% I*V*. Vk .- .i
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Then, we can obtain only m linear independent equations, if we let

j..,2 . ......,m in Eq. (4.2). They have the following form

Ax V P1  AV1
S P 1SP1 1 (1.-Ax) - "
1 2 .b X ' "pl

S Vp2 SVp2 ** *Vp2 01 X)'P 4p1

1 2 bX 2  P2 Vp

12 (1.-)Xb Pb Vpm

Eq. (4.4) in an under estimated system, which means that there are

infinite number of solutions to it. In order to overcome this

difficulty , we will assume that we have only m-1 or less faulty

elements. This assumption is reasonable from the practical point of

view, since usually only a few elements in a circuit become faulty.

This means that the unknowns corresponding to the faulty elements will

be nonzero , while those corresponding to the nonfaulty elements will be

zero. Hence, the problem will reduce to the following. Given m linear

equations in b unknowns (b>m), where m-1 or less of those unknowns are

nonzero, while the rest of them are zero. We need to point out the

nonzero unknowns corresponding to the faulty elements.

This problem could be solved by considering a subgroup of m

elements in Eq. (4.4), and solving for them. Then, by doing so for all

different combinations of m elements, the faulty elements may be

recognized as the group of m-1 (or less) elements which has a consistent

solution among the obtained solutions.

Another alternative and computationally more efficient way is by

deleting a subgroup of m-1 unknowns in Eq. (4.4), so that we obtain
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just one equation in the rest Of the b-m+1 unknowns. Then, if the

right-hand side of this equation is zero, the deleted unknowns may

correspond to the group of faulty elements. Note that, having a

consistent solution in the first way is only a necessary condition, but

it is not sufficient. This means that , in some situations, we may have

more than one group of m-1 elements satisfying that necessary condition.

Such situations depend upon the structure of the circuit and the

location of the faulty elements with respect to the location of the

accessible test nodes.

The following is an example to show that this approach may detect

multiple faults, i.e., either detect the faulty elements or isolate them

in a part of the circuit.

Consider the resistive ladder circuit in Figure 4.3, where we have

access only to three nodes, as well as to the reference node (m=3).

Then,we can have only three equations under the same test condition, and

we can only detect or isolate up to two faults. The three equations

will be

123 456789 1011 1213

i uxxxxxxrc..xrx-2-CX

V .where an X in the ijth position will be S , and u corresponds to_j L

the unknown vector of dimension 13.

* .. "-
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Fig. 4.3 Example of a resistive ladder circuit with only

three accessible ports.
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Since the three adjoint circuits are excited by a 1A current source

at nodes 1,2 and 3, respectively. Then, we can see that the two

portions of' Eq. (4i.5) boxed by a solid line are dependent, and the same

thing applies to those with the dashed line. This means that, if we

have a double fault , such that one of the faulty elements is in the

group (R.1 1 R2 . . . . . . ' , and the other is in (R7,R8 . .. ...,R 1}, then, the

faulty elements can be identified uniquely using the above deletion of

variables scheme. However, if we have a double fault, such that the two

faulty elements are in the group JR1R 2 .... ,0R 71 (or

R7, R8 . .. .. .R 13 1), then any two elements of this group will appear

faulty Using the same scheme. This means that, in this case, we can

only isolate the double fault in a part of the circuit. In order to

narrow down the group of Possibly faulty elements, more accessible nodes

in this part of the circuit are needed.

In the next section , we explain this method for the case in which

only a single fault is assumed and only two nodes plus a reference node

are accessible.

~4.3 SINGLE FAULT IDENTIFICATIONi The single fault identification problem is a common problem. 'In

this case, it is assumed that one and only one fault occurs in a

circuit. This is sometimes the most likely situation in practice.

Using our approach, it is enough to have access to only two nodes in the

circuit (input and output nodes, say) as well as a reference node in

order to identify a single fault. An algorithm for single fault

identification will be presented in the next section. Another modified

algorithm will be presented later to handle the problem of single fault



J 7:

identification if the nonfaulty elements are within a prescribed

tolerance from their nominal values.

4.3.1 SINGLE FAULT AMONG ZERO-TOLERANCED ELEMENTS

Here, we assume that we have only a single fault, while the rest of

elements assume their nominal values. Since we assume that we have only

two accessible ports in the test circuit (m=2), then we have only two

linear equations in b unknowns. In addition, we know that one and only

one unknown is nonzero, while the rest of the b-i unknowns are zero.

Assume that the faulty element is ?I where ljljb. Then, Eq. (4.4)

will reduce to

V aX P1  1AVp

XI PI Vp1

and

V ax IX A? AV 2

I PI Vp 2

The solution of Eq. .4.6-a) must be consistent with that of Eq.

4.6-b). Hence, for the faulty element, we must have the following

relationship

kav Vp/Vpl ) (%V2p2,2)
___ =__ .... 2 V .)

s ~ p2s.1
P P

*'hs relationship could be used to determine the value of 1. i.e., to

identify the faulty element. A further step after the identification of
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the faulty element would be the calculation of the value of the faulty

component. This would be very straightforward if we could measure the

corresponding 4XI. However, this may not be possible, since we have

access to only two ports of the circuit. Hence, we will have to look

for an alternative way.

An expression for AX1 could be obtained through the bilinear

transformation. Since any response in a circuit can be written in terms

of one parameter in the bilinear form [6], then X1 could be expressed in

terms of P1 as

A Pl B
X - .... (4.8)

1C Pl + D

where A,B,C and D are constants that do not depend on P1, with the

property that

A D - B C 1 0 .... (4.9)

Moreover, since X1 is the controlling voltage or current for element P1

(Table I), then it can be easily shown that always A=O , for any circuit

element. Then Eq. (4.9) reduces to

B X I  .-. . . ( . I 0 )
1=C PI D

Now, assume that only the parameter Pl changes to PI P

consequently X1--0 X 1 AX1 , which will be given by
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B
X + = ...(4.11)C(Pi+ API) + D

By dividing Eq. (4.11) by Eq. (4.10), we get

AX 11 + - : . ...(4.12)

1 +1-
Pl

where

CP 
1
1 1 .. (4.1J)

CP1 + D

From Eqs. (4.6),(4.7) and (4.12), we have

4 -4LO)/Csvpj  i(4vPJ)] ;J=1,2 ( 4PA V P I V

which is an expression for the relative error in the parameter PI" The

constant Yl could be calculated in two ways. The first way, is by

rewriting Eq. (4.13) as

B

D CP4D X l1nominala i-I- - - = - :=- ... (4.15)
CPI D B X1 1p:

D

which needs, in addition, an analysis for the circuit with nominal

values except the parameter P1 is set to zero.

The other way would be by partially differentiating X1 (in Eq.
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(4.10))with resreor to P1

X1  -BC
-- = .... (4.16)

a P1 (CPI D )2

Then, we use Eq. (4.3) to get an expression for the first-order

sensitivity of X with respect to PI"

Xl Xl Pl -C P1
S 1 = 1-- - ... (4.17)
l P1 X1  CPI D

From Eqs. (4.13) and (4.17), we see that

X11 -S 1  ... (4.18)

which also needs, in addition, an analysis of the adjoint circuit with a

1A current source connected across X1 as an excitation. However, this

way is more computationally efficient than the first way , because the

second way does not need another LU decomposition, while the first way

does.

Based on the previous results, the algorithm for single fault

identification will be as follows.

(1) Calculate the first-order sensitivities p  and P

Pk Ic

k=1,2 .....,b.

(2) Measure the quantities a VP1  and A Vp2  under the same test

condition.
VV

(3) Calculate the quantities C( ) ( aP)/S V p1 and

k pi ~k
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C( 2)z 4L c)S Vp2  k;or2 ... ,b.
k p2 k

(4) (a) If ICM )C1 (2) 1=0 ;for all k=1,2 ....... b, this means that

there is no fault.

(b) If iC () C(2 )I=0 ;for some i 1,2 ..... ,p , where
i i

1 .1 lpb , and where P1 P1P . . . . . .. 'P are parallel

1C1 _( )i 2 p
elements, and k5 k ;for k=1,2 ...... , b and

kl 1 ,12, ,lp this means that one or more of the parallel

group P1 ,P.12 ....... P P are faulty.

(c) Otherwise, there is more than one fault.

(5) Calculate c'1 by either of the following ways

(a) Solve the original circuit with nominal parameters except that

Pl=O and use Eq. (4.15), or,

(b) solve the adjoint circuit with a 1A current source across X, as

an excitation, and calculate the first-order sensitivity of X
X1

with respect to P1, i.e., SI , then, use Eq. (4.18).

(6) Calculate the relative error in the faulty parameter P1 using Eq.

(4.14) for either j:1 or 2.

Computationally, the algorithm needs the analysis of one original

and three adjoint circuits for the identification and calculation of a

single fault. However, since the nodal matrix for the adjoint network

is the transpose of that for the original network, then, we need to

perform the matrix inversion or LU decomposition only once. The rest of

calculations will be straightforward This indicates that the

algorithm is highly computationally efficient with no required storage

and with minimum measurements, on the contrary to the fault dictionary

approach.
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In the next section, we will modify the same algorithm to detect

single faults when the rest of parameters are within a prescribed

tolerance from their nominal values.

4I.3.2 SINGLE FAULT AMONG NONZERO-TOLERANCED ELEMENTS

Here, we will require less stringent assumptions on the faulty

network. Specifically, we assume that we have only a single fault,

while the other element values are within a specified tolerance (say 8

from their nominal values. Of course, we require that the relative

error in the faulty parameter be clearly distinguishable from the

relative error in the good parameters. This situation is much more

practical than the case discussed in the previous section. This is

because a manufactured circuit will not have component values equal to

the nominal design values, but only within some specified tolerance of

their nominal values. In the following, we will see how we may identify

the faulty parameter under the above assumptions.

Assume that the faulty parameter is P., where 1<l.<b. Assume also

that all the other parameters are within some tolerance of their nominal

values, for example

-I 1. 8 ;for all k=1,2,..,b and ki1 ...(4.19)
Pk

and where 5 Is the maximum allowed relative tolerance, 8 >_O.

Next, we will calculate the change in the response X k of the

parameter P k due to the change in all the parameters. We will assume

that first-order sensitivity values can be used to obtain a reasonable

estimate of the effect of the deviation of the good parameters from
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their nominal values. Thus, we write

b Xk
AX- aPi Xkl ... (4.20)k i+ 1 ki

where 4Xkl is the change in Xk due to only a change in Pl. By dividing

both sides of Eq. (4.20) by Xk, then adding 1 to both sides, we get

AXk aXkl b Xk &PiI+ -- 1(+ -)+ E S p.(--) ... (4.21)

Xk Xk i-1 P i
idl

Xk
where S is the first-order sensitivity of Xk with respect to Pi,

given by Eq. (4.3).

As stated in the previous section, that we can express Xk as a

function of P1 in the bilinear form as follows

AkP l+Bk
Xk = ;k1,2 .....,b ...(4.22)

CkPI Dk

Note that A=O. When only P1 - 1->P AP1 , then Xk-- Xk AXkl , and we

have

Xk &Xkl = ;k-I,2 ......,b ...(4.23)
Ck(Pl API) Dk

Dividing Eq. (4.23) by (4.22), we get

AXkl 1+ Sk(kPl/p1)
1+ - = ;k-1,2, ...... b ...(4.24)

Xk 1+ tk(4pl/P1)
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where

Ck Pl Ak Pl
ak K .. ,and Bk A ... (.25)

CkPl Dk AkPl Bk

Now, we will try to get a relationship between o'k and Ok. By

partially differentiating Xk with respect to P1 in Eq. (4.22), we get

Xk AkDK-BkCk
S ..... ( 4.26 )

BP. (CkPl+Dk) 2

From Eqs. (4.3 ),(4.22 ),(4. 2 5 ) and (4.26), we get the relationship

Sk: = k ...(4.27)

Note that 0,=O, which gives Eq. (4.18). Substituting from Eq. (4.27)

into Eq. (4.24), we get

LXkl Xk

XSp (AP /P 1 )

1 k - 1 (428)

Again, substituting from Eq. (4.28) into Eq. (4.24), and then, into

Eq. (4.2), we get

Xk

b V P (P 1/ )- b Xk APk AVpj
E SPJI. + E Sp (APi/P ;J=,2 ... (4.29)

kc-i IC I k(APl/Pl) ix Vpj
id1

x1
Eq. (4.29) can be rewritten as (using l'-Sp1)

p.
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A P 1 b X I  Pi ] (AV pj/Vpj
+ 1: S (-) ]z

P l. < 1 (AP1 /P 1 ) i-i Pp
Sl P1

"

x 1) x~k
S (4P /P1 ) bX P

i1 b V pj ---Pk 1+ ) b X k 4P i
- E S ? S (-) ;j-1,2 ... (1,.30)

V k=1 I k P 1.+
S V kil k PaI k(aplIPl )  i-1 i Pi

iS-PkW i~Jl
t"1

Next, we will simplify Eq. (4.30) using the assumption that the

absolute relative error in the faulty parameter AP' is

distinguishably greater than the maximum tolerance value

Specifically, we will study two cases. In the first case, we will

consider a positive fault, i.e., the faulty parameter has a value above

its nominal value. In the second case, we will consider a negative

fault, i.e., the faulty parameter has a value below its nominal value.

Here, we assume that the faulty parameter has a value greater than
AP 1

its nominal value, i. e., 0<-:!< co. Moreover, we assume that
AP "Pis high enough, such that

I(k( 1>> 1 ;at least for k=1,2 ..... ,b and kil ...(4.31)

Using this assumption Eq. (4.30) reduces to
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1 b X I Pi (AV pj/Vp )
(I-)[ c + E s p (-]-

P I..o1 (P 1/P) i=1 i P V

I p

Xk
1 bV 4 APk PI b Xk APii- Z.- S p ',(-)+--+) - 1: S p (-)] ;J=1,2 ... (4.32)

V k:1 k P. k k 'a' Pi

S Ph 11

Consider the term

X )kShj C k+SP 1 Xk P I= co+ S k Xk2 p ... (4.33)

Y ek ck 'ek Xk nominal

In deriving Eq. (4.33), we used Eqs. (4.22),(4.25) and (4.27).

Substituting from Eq. (4.33) into Eq. (4.32), we get

QC(j) = Cl( ) - dIJ) ;J=1,2 ...(4.34)

where

Q) b X Pi

z(-)[ + 1: Sp( ... (.35)

p 1 1.441(Apl/pl) i:1 i P

and

U) (A V pi/V pj ) .. (43

S PJ

and
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1 b V AP Xkb Xk P1 i

U) k-fl
d =)-- Z S?,P( [ 1? 4. : --- )] ... (4.3'7)

V k-I k P k X k nominal. iz1 i P iS Plck 14

Pl

Let

D,(J) - a idl(J) I

1S b5 Xk Pl: oo b xk

-s ISP ... (438)
I Vpj k~l 1 Pk 1.SP1 I1Xk Inominal W

kas Id

Now, we assume that the faulty parameter has a value less than its
AP 1

nominal value, i.e., --1.< <O. In addition, we assume that
AP-11 is high enough, such that

-l- ... C(4.39)

Hence, Eq. (4.30) reduces to

AP1 APi (Ay /V

(-) I.aI PI/I) (li-l i i P

SX~I

1 b Vpj1 b.V. k=1 pk tP ) k P-~1 bX APi
C-))

SiPpkil kkeI i

Consider the term
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sXk Xk
(a +S )

1 I 1 1 0k Xk I PO1- -.--- = = ----. =... (4.41)

k  Ik 1-k Xkl nominl

In deriving Eq. (4.41), we used Eqs. (4.22),(4.25) and (4.27).

Substituting from (14.141) into (4.40), we get

Ql(J ) 2" C1(J) - e1 (J) ;J=1,2 ...(4.42)

where Q1Q )  and C1Q
)  are as given by Eqs. (41.35) and (4.36),

respectively, and

1 b V Pk XkjP= 0 b X k
e_(J)__z____+ S S (-L)] ... ( 43)
V k=1 k P k Xk1nnminal 1 PS Ph~l UPi

Let

E 1 (j ) ==ax Ie,(J )

1lb sV ix k~p0 b Xk
z-- ' AIs PJI 1 8+ z (4.4)

SP pj1 k i X~omnal ilii
I P1  k£, -

From Eqs. (4.34) and (4.42), it is necessary for the faulty

parameter P1 to have almost equal values of QI ( j ) for j=1 and 2, i.e.

Q - Q(2), under case I or case I. This is because the quantity

Q1( J ) does not depend upon the value of j , as seen from Eq. (4.35).

There will be a minor problem when we try to calculate the
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quantities d (J) and ej Q) using Eqs. (4.37) and (4.43), respectively.

i
This is because we do not know the actual value of;

iz1,2 .....,b and iil for the good parameters. However, we do know

that -P i:1,2 ...... ,b and idl. Hence, we can calculate the

maximum possible values of both d1 (J) and elJ, which are given by Eqs.

(4.38) and (4.44). Then, Q1 (i) should be somewhere in the interval

Cc (J)-D ) CcI(J) DI(J ) I for case I, and for case II, Q1
( J) should be

within the interval [C11(J)-E(JJE( . This implies that we

should have an overlapping of the two intervals corresponding to j=1 and

2, for case I or case I. A necessary and sufficient condition for that

overlapping requirement is that

IC M( C (2)1< () (2

)~c 1-c 1  I i D )D(2) ;for case I ... (4.45)

and

IC 1 )-C (2 ~I E 1 ) El(2) ;for case I ...(4.46)

It is not easy to calculate the exact value of the faulty
AP 

icomponent, because we do not know the actual value of "P.

i=1,2 .....,b and idl. However, one can have an expected value of it,

by taking the expectation of both sides of Eq. (4.34) and Eq. (4.42)

for case I and case I, respectively. Or, one can obtain a range where

the faulty parameter value will be, by using Eqs. (-.34),(-.35),(4.36)

and (4.38) for case I, and Eqs. (4.42),(-.35),(4.36) and (4.44) for

case I.

Based on the previous results, an algorithm for single fault
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identification among nonzero-toleranced parameters will be as follows:

(1) Calculate the first-order sensitivities S l SP 2  and SPk P k Pi
for all k,i=1,2 .....,b.

(2) Measure the quantities &Vpl and AVp2 .

(3) Calculate the quantities C(I) and Ck( 2) ; k:1,2 .....,b using Eq.

(4.36).

(4) Solve the original circuit with nominal values except Pk= co once

and again with Pk= 0. Do this for k=1,2 .....,b.

(5) Calculate the quantities D(,Dl)El and El(2 ) ; for all

1=1,2 .....,b, using Eqs. (4.38) and (4.44).

(6)(a) If _Ck ( 2Ck)IDk( 1)(Dk(2 ) , and ECk2Ck)Ek )Ek

for all k=1,2 .....,b, this means that there is no fault.

(b) If k Ckk(ck (2) EDk (1)+Dk ( 1) o Ck( -Ck( 1!Ek ( +Ek( ; for

only k 11912,. ,lp, where I.li,12, .... l b and

Pl 12 , Pl are parallel elements, then this means that one

or more of P1,P2 ....'P are faulty.

(c) Otherwise, there is more than one fault, or the algorithm fails

because the assumptions made are not met, e.g., a small single

fault value relative to the prescribed tolerance value.

We see that in order to add the feature of single fault

identification among nonzero-toleranced parameters, we have to pay for

extra computations.

In the case where the test circuit is originally excited by a

voltage source at the input port, some minor modifications are
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necessary. The corresponding first adjoint circuit will be excited at

the input port (port 1) by a -1V voltage source, while the second

adjoint circuit will be excited by a 1A current source at the output

port (port 2) with port 1 short-circuited., In addition, the quantities

sVp 1  AV1 S I P 0
p and will be replaced by and! k p ISk P1

respectively.

If the algorithm fails in a situation, where some parameters of the

circuit are within some tolerance of their nominal values, then another

run may not fail by switching ports 1 and 2 from the excitation point of

view. This will depend upon some factors; a) first-order sensitivity

values, b) structure of the circuit, c) location of the single fault

with respect to the exciting port, and d) the relative error in the

faulty parameter with respect to the specified tolerance.

The method is also capable of identifying catastrophic failures,

especially short-circuit faults. For example, if an admittance branch

A Y I AV1Y becomes short-circuited, then Wy---D , also 1+ - , but

the product +will have a finite value since1W1 1Y1V IJ " j 1,2, provided that1 77) =(AVpj ipjiy '
V I

Finally, a dc test and an ac test may be able to separate between

elements that are in parallel in the ac circuit, but are not in the dc

circuit.

4.4 MULTIPLE FAULT DETERMINATION AND ISOLAT:ON SCHEMES

Some other schemes different than the scheme discussed above may be

used when some of the nodes in a circuit are inaccessible. As seen

before, the tecnnique used in tne previous section is most suitable for
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single fault identification. Another technique may be used for fault

determination and isolation when the numer of accessible nodes is more

than the number of inaccessible nodes. It also can be used for the

fault isolation in a circuit composed of connected subcircuits, e.g., a

card of IC chips connected together.

4.4 .1 DETERMINATION AND ISOLATION OF FAULTY ELEMENTS IN A CIRCUIT WITH

FEW INACCESSIBLE NODES

The following technique will be most useful for circuits with the

number of inaccessible nodes fewer than the number of accessible nodes.

In such situation, deviation in some elements could be determined

exactly, while deviation in the other elements cannot be determined, but

we can determine whether or not a fault is present. :n fact, the number

of elements that could be determined exactly depends upon the number and

location of the inaccessible nodes relative to the accessible nodes in a

circuit, as well as the structure of the circuit itself. :n general.

the less the number of inaccessible nodes, the more elements that can be

determined exactly.

Consider a circuit N with b branches, and let the set of nodes

in1 ,n2 , . .. . . ,nI) be the set of accessible nodes each of which is a one

terminal of a branch whose other terminal is an inaccessible node.

Then, we can split the circuit N into two subcircuits N, and N,,Figure

4.4, such that N, contains all the inaccessible nodes together with the

elements connected to those inaccessible nodes and every element

connected directly between any two nodes of the set il1.n ........ n,

While the subeircuit N, contains the rest of the accessible nodes

together with the rest of branches.
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N, 1

FP-6629

Fig. 4.4 The circuit N is divided into two subcircuits N1 and '42'
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Next, we will show how we can determine exactly the element

deviations in the suboircuit N2 , and decide whether the suboircuit N,

has one or more faults, or not. This could be achieved through the

choice of the different adjoint circuits. Specifically, by appropriate

short-circuits and exciting appropriate nodes with equal voltage sources

such that the voltages across all the elements in subcircuit N, are

zero. Then, the test data and these different adjoint circuits could be

used to generate a number of linear equations equal to the number, of

elements in subcircuit N2 . Solving these equations will yield the

deviation in the elements of N2 . Another adjoint circuit or more can be

used along with a set of measurements to generate other equations. From

the obtained solution for element deviations in N2 and these last

equations, we can decide whether the suboircuit N1 has one or more

faults or not. This technique will be demonstrated through the

following example.

Consider the simple circuit shown in Figure 4.5, where only node 6

is assumed to be inaccessible. The circuit is split into two

subcircuits, N, and N2 , indicated by the dashed line in Figure 4.5.1n

this example, the set of nodes nIPn2, ..... ,nl} is (4,5). The different

adjoint circuits are as shown in Figure 4.6. It is clear from Figure

4.6, that the first four adjoint circuits are chosen such that the

voltage across the elements of subircuit N1 (elements R10 ,Rll and R2)

remain zero. By associating these five adjoint circuits with three sets

of different measurements (e.g. by exciting the test circuit at nodes

1,2 and 3, then, measuring the accessible node voltages) we obtain the

wp

. -



90 L

- -- ---- 

N, N,

N 2 .

% I

II

RI\,% Rio R12

R2 %%..0 Rs 3 I •  R
I 

IPq

R, R R, R 3

Fig. 4.5 Example of a circuit with one inaccessible node.

! f
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(D R4

* Rs R®

R, Rs R., R9 R±

PP-6627

Fig. 4.6 Five adjoint circuits for the circuit at the example.
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following system of linear equations.

lal adj. ckt. 2 t.d. i XIx AG1  X
x x AG2  X

2JA adj. okt.+2 t.d. x xj x0 x
il XXL-AG 3  X

{ , ~ ~ x. ; Ii3=g adj. ckt.,.3 t.d. -X! AG 4  X
X X X1 A G5 X
X X X~ AG X .(417

1b adj. akt.+2 t.d. X X X X X X X X AG8 X
X1X X X X X X XL---. A G9 -

5U adj. ckt.+l t.d. {L X X X X X X X X X X x AG lo V
Aul 1
L " 1 2 .

where A uia(Vi+AVi)AGL, for i,11 and 12, and an X means a nonzero entry,

and a blank means a zero entry. Solving the first nine equations of Eq. 1
(14.147) yields G1 ,AG2 ..... ,G 9 . Then, by substituting

AG ,4G2, ..... ,AG9 in the last equation in Eq. (4.47), we check whether

GloG11 and G12 may be faulty or not (provided that the linear

combination we have in the last equation for AG1oAU11 and Au12 will not

result in zero right-hand side value). Note that for this example, we

can generate two more equations in AG1o,Au 11 and Au12 using two other

adjoint circuits (by exciting ports 2 an. 3 each at a time by a IA

current source). Then, we can solve the last three equations to

determine the values of AG10 ,Au11 and Au12 under the corresponding test

condition. This will determine AG10 and whether Gll and/or G12 are

faulty or not. i

4.1.2 FAULT ISOLATION IN CIRCUITS COMPOSED OF CONNECTED SUBCIRCUIT

BLOCKS

The same scheme can be used for the fault isolation at the block

level, i.e.,decide whether a block in a circuit is faulty or not. This
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is mainly based on the idea that a block with few accessible nodes coud

fbe collapsed by means of an equivalent transformation to a circuit with

all accessible nodes. However, we do not actually have to perform that

equivalent transformation. To illustrate this technique, we consider

the following example.

Examp le

Consider two single-input single-output subcircuits N, and N2

connected in tandem as shown in Figure 4.7. For simplicity, assume that

N, and N2 are linear passive networks. Assume that the input node (node

1), the junction node (node 3), and the output node (node 4) are

accessible. Also, assume that, in subeircuit N1, there is only one

impedance (Z) connected to the Junction node 3, with the other end node

2 being accessible, as well. Then, by means of equivalent

transformation, we can model subcircuit N ,excluding Z14, by an

equivalent lI-network, and subcircuit N 2 by an equivalent l7-network,

Figure 4.8. By applying the same approach done in the third chapter, we

can determine the faults in the equivalent impedances Z1,Z2 , .. . . . ,Z7.

Then, if we have faults in one or more of (ZI,Z 2,Z3,Z 4), this implies

that the suboircuit N1 is faulty. Similarly, if we have faults in one

or more of (Z 5 Z6,Z 7), this implies that the suboircuit 12 is faulty.

)The assumption that we should have node 2 accessible is important.

This is because, if we do not have this node accessible, this means that

the impedances Z3 and Z5 will be in parallel, which could not be

separated under single frequency or dc measurements. Alternatively, we

could assume the same assumption for the subcircuit N2 instead of N.

In general, we need to assume that, in one of the subcircuits, we have

.!.
.* .- -. r
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Fig. 4.7 An wxmple or two circuita connected in tandem.

ItAI
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1 0

L~ -------------...

Fig. 1.8 An equivalent circuit for the circuit of the examnple.
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accessibility to all the nodes which are the other end of all the {
elements connected to the output nodes of that subeircuit.

The same technique can be used for general situation, where we have

more than two suboircuits connected in different ways.

1.I

io. ,'
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CHAP72R 5

FAULT ANALYSIS IN ANALOG CIRCUITS

WITH NONLINEAR ELD4ENTS

In the previous chapters, te work was concentrated on linear

circuits. However, we can extend the same approach to deal with

circuits containing some nonlinear elements. This is simply because of

the fact that Tellegen's powez theorem is true also for nonlinear

networks. In this case, we will see how to reformulate the equations in

order to employ the idea of replacing each nonlinear element by its

equivalent dc linear elements at that operating point. However, care

should be taken when generating our linear equations using different

measurement data. This is because the operating points of such

nonlinear elements depend upon the measurement conditions. This

difficulty may be overcome by the proper choice of adjoint circuits to

isolate, first, the linear elements, then, the nonlinear elements, each

at a time. This will yield the deviation in the linear elements, as

well as one point on the characteristic of each nonlinear element.

As shown previously, assume we have a network N with b branches and

m ports, where (Vk,Ik) is the voltage across and current through the kth

branch, respectively. Also, assume we have the adjoint circuit N with

{Vk,Ik} as the corresponding voltage and current of its kth branch,

respectively. Assuming that both circuits obey Kirchhorf's laws, we can

apply Tellegen's power theorem to get

I.
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b m i ;
0 ,l kIkVk I k )+ E (VpJI pIpJ)kzl PJ ..

where V and Ipj are the Jth port voltage and current, respectively.

Also, we apply the same theorem to the faulted circuit and the adjoint

circuit to ge t

b .A

z tv k(k* 'k)"(Vk"&Vk)Ik)
kal

E [V (I I])z 0 .pj.I. (5.2)
Jul Pi JIpj+61p pJ ....

Rewrite Eq. (5.2) as

b. b
E Vk(Ik +AIkT ) =z (Vk+AVk)Ik
kcl k u1

E Z1V pJ(I pJ+AI pJ)-(V pj+aV )I (53)
,jal pJ P1 P 1 P1

By adding Eq. (5.1) to Eq. (5.3), we get

b . b
E Vk(xk+AIk) 2 'E (AVkIk+ ik)
ksl k 1

*JEIZ(Vp AI) ... •.)

For simplicity, assume that all the circuit elements are passive.

Then, for linear elements we have

IkcIYkV k  ,and Ik+AIk(Yk+AYk)(Vk+ Vk) .... (5.5)

and for nonlinear elements, we have

t 6
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Ikmfk(Vk) ,and Ik iAIkFk(Vk+AVk) .... (5.6)

where fk is the nominal nonlinear relation between current and voltage,

and Fk is the corresponding faulty nonlinear relation, for the kth

element. Then Sq. (5.4) will assume the form

JIT .1 e .. 5

where

~k  ;if the kth element is 'nonlinear

and Ik~ VkVkV) ;if the kth element is linear

{ Fk(Vk AVk) ;if the kth element is nonlinear
a(Yk Yk ;if the kth element is linearand kAk

b m
e 7: (AVklk+Vklk)+ Z (AVp I pj-Vpj i ...(5.10)

k-l J2l - "

Eq. (5.7) is linear in x, although we have some nonlinear elements

in the circuit N. By generating b equations of the form of Eq. (5.7),

we can solve them to obtain the deviation in the linear elements and a

point on the I-J characteristic of each nonlinear element. This system

of linear equations could be obtained by associating different

measurement data with different adjoint circuits. Since, for a

nonlinear element, the corresponding unknown is its current, which

depends nonlinearly upon its voltage, then the value of that unknown

will vary under different test conditions. Hence, special choice of the

adjoint circuits should be made in order to let the unknown,
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corresponding to each nonlinear element, appear in only the equations

generated under the same test condition. Appropriate short-circuits and

equal voltage source excitations could be used to generate those

different adjoint circuits. The following example will illustrate such

techniques.

Consider the ladder circuit shown in Figure 5.1, which has seven

linear resistors and two nonlinear resistors. The different adjoint

circuits are shown in Figure 5.2. The first adjoint circuit isolates R1

and R 2 . The second adjoint circuit isolates R3 and R4. The third

adjoint circuit isolates RS,R 6 and R7. The fourth adjoint circuit

isolates N.L.8, and the fifth adjoint circuit isolates N.L.9. For this

example, three different test data are required. They may be obtained

by exciting nodes 1,2 and 4 by a 1A current source, each at a time. By

associating these adjoint circuits with three different test data, we

get the following system of equations.

First adjoint circuit X"X
+ two test data X X1 G2 4GI X
Second adjoint circuit -f G3.G 3  X
+ two test data X Xi G 3
Third adjoint circuit X X X X- I' G G G X ... (5.11)
+ three test data X X X X X X X1 G 6+G 6  X

X X X X X X G.AG X
4th adj. ckt. +one t.d. X X X X X X"XD F ( 8+08) X
5th adj. ckt. +one t.d. (X X X X X X X 6 F9 (V. AV9) X

where an X means a nonzero entry and a blank means a zero entry.

Solving the first seven equations in Eq. (5.11), we get

(Gi+AGi),i1,2 ..... ,7, while solving the last two equations, we get the

current through N.L.8 and N.L.9 at the corresponding test conditions.
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R, N. L.8 (D N.L. 9 ® R.

Fig. 5.1 An example of a circuit with two non~linear elements.
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QR2~ (DR,

1A RR1 1A

0 R2 ®N.L. 8 N.L. 9 5 . 0
R, Rs R6  ±tR., R3

0 R2 3N.L.84N.L. R4 0R, R, R6 R3

IM-6632

Fig. 5.2 The different adjoint circuits for the circuit of the example.
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These currents will represent a point on the I-V characteristic of each

nonlinear element. More points could be obtained by generating

different equations under different test conditions.

It may be impossible to solve for ae elements in some structures.

Generally, the more nonlinear elements relative to the number of linear

elements in a circuit , the more difficult it is to solve for the

elements. Note that this technique may be applied in the do test of a

circuit with nonlinear elements, e.g.,diodes, transistors, etc. Then,

after knowing the operating points for such elements, small signal

models could be used for those elements in preparation for the ac small

signal test.

-. ,I
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CHAPTER 6

N UMER ICAL EXAM4PLES

In this chapter, some numerical examples are presented to

demonstrate the application of the single fault detection algorithm in

analog circuits. These examples were selected to cover almost every

practical situation. They were solved on the DEC-10 computer system,

which has a 36-bit word, using single precision arithmetic. In each

example, the original circuit and the associated different adjoint

circuits were simulated. Also, the faulty circuit was simulated under

some different fault conditions as a substitute for the measurements.

AW1 .L

Consider a 9th order Butterworth passive low pass filter [22] with

a 3dB cutoff frequency of 1 rad/sec, as shown in Figure 6.1. Assume

that only the input port (port 1) and the output port (port 2) are

accessible. The nominal circuit parameter values, and the normalized

sensitivities of Ip1 and V with respect to each parameter at w2 0.5

rad/sec are given below.

A.
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Fig. 6.1 9th order Butterworth passive low pass filter.
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Parameter(P ) Nominal Values Ips

G 1.0000 0 0.5001752-JO.0010239 0.5001751-JO.0010239
C2  0.3473 F -0.0005329+JO.0867323 0.0001778-JO.0867946
F 1.0000 H 0.0873528.J0.2427349 0.0004661*JO.2578014
C3  1.5320 F 0.347672J0.2239710 00003354-JO.143348
r5  1.8790 H 0.5085224-jO.1778165 -0.000545.J.53792889
C6  2.0000 F 0.0990011-JO.5785376 -0.0012198-JO.5871540
7  1.8790 H .0.4168574-jo.3381497 -0.0005445.JO.5379289

CS 1.5320 F -0.402586+jo.0937254 0.0003354-JO.4143348
r 1.0000 H -0.1628680+jO.1993811 0.0004661+JO.2578014
10 0.3473 F -0.0290323+JO.0817944 0.0001778-JO.0867946

G11 1.0000 0 0.4710304+JO.1671885 -0.499828-JO.0010239

A single fault is made in the element C4 such that &C4 a -0.332 F

(relative error a -0.21671), while the rest of elements assume their

nominal values. The corresponding measurements (from the faulted

circuit simulation) are given by

-r a-0.0703694-JO.0548513

AV2

and, A 2 -0.0080688+j0.0890596
p2

Then, the quantities Diff. X k)l,2.....,11 , are

calculated and found to be

Element Diff

RI  0.3135244E+00
C2  0.9899682E.00
L 3 0.6558627E.00
C4 0.96808281-07
L 5  0.29815751.00
C6  0.2536567E+00
L 0.18071231-01
CT 0.39678761.00
L 80.4613443E.00
C10  0.1276600E. 01
R 10 0.2216817E+00

Because of the limited accuracy of a computer, it is expected that

the difference corresponding to the faulty element will not be zero.

However, it will be very small compared to the differences corresponding
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to the other nonFaulty elements. Accordingly, from the above values, it

is clear that the faulty element is C . The value of is calculated

using Eq. (18) of the fourth chapter and found to be

-0.000335*J0.41I3348. Then Eq. (4.14) of the fourth chapter is used to

calculate the value of the relative error in C4, which is found to be

-0.2167102JO.0 .This calculated relative error value agrees with the

exact value

Another single fault is made in the element R11 such that

AG11 -0.285714 0-1 (relative error 2 -0.285714), while the rest of

elements assume their nominal values. The following is the

corresponding values of Diffk for each element.

Element Di

R1  0.6566101E+00

C2  0.6401004E*00
L 3  0. 1217485E+0 1
C4 0.4 993380E+00
L5  0.2676563E+00
C 6  0.5655879E+00
L7  0.3575838E+00
C87 0.3863488E+00
L8 0.1273844E+01
C9  0.3914174E-06
R10 0.6386881E-07
11

From the above values, CI0 and R1 appear to be faulty. This is

because they are in parallel. The value of (Y0 is a-0.0001778+JO.0867946

and the value of cI is 0.4998248+J0.0010239. The calculated relative

error in C10 is 0.0+j1.6453459, while the calculated relative error in

G11 is -0.2857143*JO.0 . This shows that G is the true faulty element

because the relative error value must be real. The calculated value of

the relative error in Gil agrees with the exact value

I.
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ZIANW& 2..

Consider the simple transistor mplifier circuit [6) shown in

Figure 6.2. Assume tht we have access only to the input port (port 1)

and the output port (port 2). The nominal circuit parameter values and

the sensitivities of Ip1 and V. 2 with respect to each circuit parameter

at w. 502 rad/sec are given below (this frequency is chosen to be in

the neiglorbood of a low frequency pole).

Parameter(P.) Nominal Values Pl SVp2

C1  0.478 i, sF 0.2298527-JO.4090646 0.2298527-JO .4090645
G2, 8.420 Ici 0.7171331 JO.3594040 -0.2024641+JO.3811799
G4 5.100 kO -0.0033117-J0.0005916 -0.5814817+JO.1780174
G5 1.000 co 0.0591370+JO.0262817 0.8450619-JO.244815

C6 0.683 4F -0.0090111JO.0202761 0.0941104+JO.2897430
C7 0.446 jF -0.0016268-JO.0000381 0. 1588052-JO.3660625

G 5.210 kO. 0.000044.J0.0018976 -0.5729964J0.1852427
Gie3.610 kO 0.0524,?03 J0.0491858 -0.0373001 J0.0280279

0.000290 0.0000624J0.0000599 0.001 1573+JO.0000472X 0.0288 -0.051048-JO.0467522 0.0731976-JO.0162581

hoe 35.75 kcO 0.0063583 JO.0031935 -0.0067837 JO.0036589
coo 26.00 pF -0.0000015 JO.0000030 -0.0000017-JO.0000032

where G2, 3 is the parallel combination of G2 and G3.

A single fault is made in the element C7 such that A C7 a 0.054 1& F

(relative error 2 0.1210762), while the rest of the elements assume

their nominal values. The faulted circuit is simulated and the

measurements are obtained. Then, the Diffk Corresponding to each

element is calculated. These differences are given below.

I.i
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R.
R,

Q1c. Chi

N,~vi +, ca± pV ,

R, . C .
R

(a) (b)

Fig. 6.2 (a) Simple transistor amplifier circuit.
(b) Small signal model for the transistor.

tp

-44
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Element Dift f k

C1  0.9351 468E-01

2,3 0.1012977E.00
40.1175077E.00
R 5 0.51801476E-01

6 o.1510933E+o
C7 0.6867184E-05
R o.1563013..OO
his 0.9365815E+00
h 0.3968770E+02
4 0.5817796E+00

hoe. 0.5659735E+01
Coe 0.1214649E.05

This shows that C7 is the faulty element. Then a7 is calculated to

0.8411948 j0.3660625 , and the relative error is 0.1210727+J.0000025

which agrees with the exact value to some accuracy.

Another single fault is made in C6 such that &C6 2 -0.68232 9

(relative error a -0.999), while the rest of the circuit elements assume

their nominal values. In this case, the differences corresponding to

each element are given below.

Element Diffk
-

C 0.6211047E.00
R 2 ,3 0.7323908E+00

R 4 0.6174266E+01
SO. 31144,8E-06
C6C 0.9059803E-06

O 0. 1447078E+02
R 8  0.1162000E+02

hi. 0.6843163E+01
hr. 0.6830308E+01

S0.4i419909E+01
h 0. 4299827E 02
o 000.9227960E+05

This shows that both R5 and C6 are faulty, although only C6 is the true

faulty element. This is expected because R5 and C6 are in parallel.

However, when we calculate the relative error in RS, we get

it. *:' :" " ' ':' ....m
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3167.96-J3096.43 , while for C6 we get -0.9990002-JO.0000004. It is

clear from these values that C6 is the true faulty element, because the

relative error must be real.

A third single fault is made in hoe such the Aho- 0.02798 CT

(relative error z 999.0), while the rest of circuit parameters assume

their nominal values. The differences corresponding to each element are

given below.

Element Diff k

C1  0.3357031E+01
R 2, .1385590E+01
R3 0.2546923E,+03
R5 0.1418424E+02
C6 0.4136963E.02
7 0.5215209E+.03R7 "
8 0.4499215E+03
hie 0.1035142E+02
h e0.1063342E+05

0.9078709E-06
h 0.8753567E-05oeCoe O. 1792730E-01

Again, since gm and hoe are in parallel, they both appear faulty.

However, when we calculate the relative error in both gm and hoel we get

-0.1135017-J0.0615357 for gm and 999.000-JO.0000357 for hoe. This

indicates that hoe is the true faulty element, because the relative

error must be real.

Consider the Sallen and Key low pass filter [23] shown in Figure

6.3. The circuit parameter nominal values, and the sensitivities of Ipl

and Vp2 with respect to the circuit parameters are given below

(w: 1.0E5 rad/sec).

77
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Fig. 6.3 SaJllen and Key low pass filter.
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Parameter(Pi) Nominal Values spl P2

G1  50.00 In 0.6098415+JO.6212523 0.6098154JO.6212522
G2  100.0 M 0.0862345 J0. 1465388 1.0713967+j0.2674421

C 1.070 nF -0.3109863-J0.3293604 -1 .3442544-J-0.0582801
C 1.000 nF 0.6149102-J0.4384307 -0.3369839-J0.8 30414 24G5  128.7 10 0.0000000+JO.0000000 0.0000000+JO.0000000
G6 50.00 IM 0.1554304+J0.1264330 0.6139787-JO. 1446491
G7  37.00 IM 0.1554304j0.1264330 0.6139787-J0. 1446491
A8 100000. 0.0000064+,jo.0000052 0.0000251-JO.0000059

The following describes some different single faults together with

their obtained results.

(a) Single fault in G, (exact relative error x 0.020408)

DiffS = 0.2387080E-07

, a 0. 3901585-JO.6212522

Calculated relative error = 0.0204082 JO.0

(b) Single fault in G2 (exact relative error a 999.0)

Diff2 a 0.2002193E-04

Y2 a -O.0713968-JO.2674421

Calculated relative error z 1000.60+jo.3716239

(a) Single fault in C3 (exact relative error = 99.0)

Diff3 = 0.1575698E-07

03 z 1.3442544 JO.0582801

Calculated relative error a 99.0054-j0.0000995

(d) Single fault in C 4 (exact relative error z 9.0)

Diff 4 a 0.5215406E-07

ON a 0.3369839J0.8304143

Calculated relative error a 9.0000011+J0.0000017

(e) Single fault in !6 (exact relative error = 9.0)

Diff6 z 0.149304E-07

Diff7 a 0.2252569E-07



114

016 = 1.1886913-jO.1J46491

07 = 0.1886913J0.1446491

Calculated relative error in G6 = 8.9999937+JO.00000535

Calculated relative error in G7 =-9.0000000-J0.00000010

It is clear that both G6 and G7 appear faulty. This is because

siPa.= $I p  a SV  - S V p2 However, from the calculatedG6 G7 G 6 G 7
relative error value for GT, we can see that if R7 is the true faulty

element, then R 7.6R7 must be a negative resistance, which is not
possible for this example. Then R6 is the true faulty element.

ExaMple 4-

Consider a Friend circuit realizing a 2nd order high pass notch

filter [241], Figure 6.4. The circuit parameter nominal values and the

sensitivities of 1p, and V p2 with respect to the circuit parameters are

given below ( w= 3500 rad/sec).

Parameter(P ) Nominal Values SI P S Vp2

GI  13.20 IC -0.0002954J.0.7814375 -2.0971564+j8.9101788
G2  93.00 IC -0.6904411-J0.0429325 -8.4262893-Ji.6020173
G3  214.0 kO 0.1998532+J0.0450179 2.2899989 J0.8563859
G4  2.000 kO 0.1866924-JO.7257722 -2.2215950-j8.9730738
G5  2.000 kW 0.4291944+J0.516 7088 1.0913519+j6.3913345
G6  12.47 kO -0.2432444-J0.4178438 -2.7126559-j5.1676651
G7  10.00 k 2 0.2352070+JO.1729853 1.1302431*j2.5817394
C8 0.010 nF 0.4631123-JO.1010907 5.7611653-J0.4630128
C9  0.010 nF 0.4199217-J0.2285105 5.1849374-j2.5338697
A10 10000. 0.0000971+JO.0001058 0.0010032 Jo.0014338

The following describes some different single faults and their

obtained results.

(a) Single fault in G1 (exact relative error x 0.32)

Diff1 : 0.1945216E-07

El
..........A
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R2

R,

R,

II

p 1

L AR. R, Vp2

J I
Fig. 6.4, 2nd order high pass notch filter (Friend circuit).

p
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1  1.4291995-J.3568168

Calculated relative error z 0.3199999+JO.0

(b) Single fault in G2 (exact relative error z 9999.0)

Diff2  0.1490755E-07

012 x 4.4014133-JO.0438022

Calculated relative error = 10008.691+j2.333323

(a) Single fault in G3 (exact relative error = 0.019048)

Diff3 = 0.1758195E-07

Cl3 -0.1910450*J0.0019013

Calculated relative error a 0.0190477 jO.0

(d) Single fault in 04 (exact relative error a 0.0050251)

Diff4 a 0.2348175E-07

CY4 = 0.8690785+JO.5924875

Calculated relative error a 0.0050252

(e) Single fault in C8 (exact relative error -0.1)

Diff8 z 0.2734057E-07

c'8 z-2.8495944+jO.8248030

Calculated relative error a -0.1+JO.O

EuanM2 IL

Consider a Friend circuit realizing a 2nd order band pass filter

with center frequency of 1.0 kHz and a bandwidth of 100.0 Hz, Figure

6.5. The circuit parameter nominal values and the sensitivities of I

and V.2 with respect to the circuit parameters are listed below

( w 7000 rad/sec).

JI
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Parameter(P ) Nominal Values S p l  sVp2
,, "S

1.000 k n 4.4141764.1.5810643 4.4141763+J.5810642 2LG2  400.0 k 0 3.2464605.jl.8716715 3.2384681 jl.9607132
C3  7.958 nF -3.3304946-Ji.7259875 -3.3264983-J1.7705083C4 7.958 nP -3.3301424-J1.7267483 -4.3261462-j1.7712691

A5  10000. 0.0003521-JO.0007608 0.0003621-JO.0007608

The following describes some -different single faults and their

obtained results.

(a) Single fault in G1 (exact relative error a 9.0)

Diff1 z 0.5665014E-08

all =-3.4141764-J 1.5810642

Calculated relative error z 8.9999945+JO.0000069

(b) Single fault in G2 (exact relative error a 0.14286)

Dift2 a 0.263i4178E-08

o2 a-3.2384681-j1.9607133

Calculated relative error * 0.1428571+JO.0

(a) Single fault in C3 (exact relative error = 9.0)
Diff3 a 0.8330002E-08

of3 = 4.3264983J31.7705083

Calculated relative error s 8.999995+J0.0000010

(d) Single fault in C4 (exact relative error = -0.12027)

Diff 4 = 0.2082501E-08

Of4 x=4.3261462+jI .7712691

Calculated relative error x -0.1203599 JO.0

Consider a 4th order Butterworth low pass filter using the FDNR

concept [251, Figure 6.6, with 3dB cutoff frequency of 1.0 kHz. The

circuit parameter nominal values, and the sensitivities of Ipl and V2
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CIO Ct, R, C2 R, R, -

thw FDNR concept.
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with respect to the circuit parameters are listed below (s W 700

rad/se00).I

Parmeer(i)Nminal Values V p

al 1.000 ICO) -3.I424766-J0.9295328 0.1358290.iO.T569033
G 2 1.000 Ic 0 -3.4235955-JO.9295252 0.1357217+eJO.7566731
G 31.000 Ic 0 3.4235955+J0.9295252 -0.1357217i0.-7566731

a41:000 Ic0 -0.41658-J1.2889606 1.26314121+jl.0013481

G 51.000 icO -0.4169069.jl.2885057 -1.26314376-Jl.0006804
G .0 an 04609j.855 12336J-060

G729.30 10f -3.21991468-i.9502319 1.2667378,J1.001'4152
G812.10 Ic n 0.32111149-jo.014T6300 01.311967.JO.7523334
C90.01014F -0.0562338-J0.3791203 -0.1117670-J0.15148958

C10 0.01014bF 0.1136902+JO.1588125 0.1133559+JO.1588170
C134.93 ii? 3.4254839*J0.9268999 -0. 13614110-jO .7567992

C 12 34.93 ii? 3.4239223+JO.9310275 -0. 1354578-JO.7568765
C13 54.22 nF 3.4239223+JO .9310275 -0. 13514578-jO .7568765
C 1 514.22 nF o.11466997+jl.2888574 -1 .263146146-Jl1.0011655
Cm1 10000. -0.0000768+ja.0029860 0.0005918-jo .0002621
A 15  10000. -0.0007301-J0.0000184 0.0000641+JO.0001447

A 1710000. -0.0005957.JO .00014772 0.00027148-JO .0008658
A 18 10000. -0.0001812-JO.0002260 0.0003286+JO.0001042

The following describes some different single faults with their

obtained results.

(a) Single fault in 0 7 (exact relative error a 0.95333)

Diff7 * 0.1002608E-03

017 s-0.2670898-jl .0012017

Calculated relative error a 0.953617-JO.000120

(b) Single fault in C 9(exact relative error a 1.0)

Diff9 s 0.1101016E-02

ogs 0.111767+eJ0.15'48958

Calculated relative error a 1.00011145+JO.0001555

(a) Single fault in C10) (exact relative error a-0.3)

Diffl0 a 0.5822352E-02

0!0a 0.8863097-JO.1588125 j
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Calculated relative error :-0.3009755-JO.0007091

(d) Single fault in G08 (exact relative error a -0.19333)

Diff8 a 0.9969877E-04

a8 0.8688033-jo.T523333

Calculated relative error :-0.193338412+J.0000181

From these examples, we find that in some circuits, e.g., circuits

containing op-amps, we may not be able to detect single faults due to

some equal sensitivity values. The same situation happens when we have

two or more parallel elements. However, in this case if they are

different types, they can be separated.

I..
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CHAPTER?7

CON4CLUSIONI

A method has been presented for the calculation of large circuit

component variations, based on the adjoint circuit concept. The method

requires that the node voltages of the circuit be available. In this

case, there exists a li.near relationship between large parameter

deviations and the test port measurements in a linear circuit. Given

these measurements, the values of the components can be easily computed

by solving a set of linear algebraic equations. Furthermore, the

formulation of the method allows one to determine necessary and

sufficient test conditions required to determine the component values.

The accuracy of the method in the presence of measurement errors depends

upon the structure of the circuit and its component values.

In the absence of sufficient test measurements due to the

inaccessibilty of some nodes in a circuit, the method could be used to

isolate the faulty components to s0o subset Of the components in the

circuit. It has been shown that simple input and output port voltage

measurements are enough to determine a single fault.* The same approach

is implemented at the block level, where the faulty blocks in a circuit

can be identified.

The same approach could be Used to identify faults in circuits with

some nonlinear components. Special choice of the adjoint circuits

enables one to isolate the linear elements from the nonlinear elements
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allowing one to obtain a different bias point on the I-V characteristic

of every nonlinear element.

These results were used for the fault analysis of some analog

circuit examples, and the results show excellent agreement with the

theory. .

More investigation is needed for the detection of multiple faults

given a limited auber of accessible nodes, especially when some of the

nonfaulty elements are within a specified tolerance of their nominal

values. Also, necessary and sufficient conditions need to be determined

in order to locate these multiple faults, rather than to isolate them in

a subgroup of the circuit elements. Furthermore, the application of the

single fault algorithm on active circuits with nonzero-toleranced

parameters needs to be applied to some examples in order to compare the

algorithm computationally with the fault dictionary approach. Finally,

a comprehensive computer program needs to be written for the single and

multiple fault detection and isolation that takes care of all the

practical situations that exist in practice.

L p.
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